Elizabeth DeBartolo Headshot

Elizabeth DeBartolo

Associate Professor
Department of Mechanical Engineering
Kate Gleason College of Engineering

585-475-2152
Office Location
Office Mailing Address
Building 9, Room 4449

Elizabeth DeBartolo

Associate Professor
Department of Mechanical Engineering
Kate Gleason College of Engineering

Education

BS, Duke University; MS, Ph.D., Purdue University

Bio

Dr. Elizabeth DeBartolo earned her BSE in Mechanical Engineering and Materials Science at Duke University in 1994, and completed her MS and Ph.D. in Mechanical Engineering at Purdue University in 1996 and 2000. Her primary focus area is the development of rehabilitation aids and assistive devices through her work with engineering senior design teams and graduate student research. She also does work on characterizing the mechanical behavior of novel materials, and has worked on a variety of materials from diffusion-bonded high-temperature alloys to polymers used in human tissue simulations.

In addition to her research, Dr. DeBartolo is involved in curriculum development and outreach efforts. She is an active contributor to the development and delivery of design courses in the Mechanical Engineering department and the college-wide Multidisciplinary Senior Design program. She serves on the WE@RIT (Women in Engineering @ RIT) executive board and has worked with student teams to develop a series of traveling engineering activity kits (TEAK) designed to bring engineering into middle school classrooms.

Selected Publications

  • DeBartolo, Elizabeth and Bailey, Margaret, “The TEAK Project: Students as Teachers”, International Journal of Engineering Education, vol. 25, pp. 468-478, 2009.
  • Sullivan, Christopher; DeBartolo, Elizabeth; and Lamkin-Kennard, Kathleen; “Terrain Characterization Using Modified RANSAC Analysis of Human Gait Data”, 2012 ASME Summer Bioengineering Conference, Fajardo, Puerto Rico, June 2012.
  • Smoger, Lowell; Gomes, Mario; and DeBartolo, Elizabeth, “Minimum Constraint Design Analysis and Modification of a Biaxial Tensile Test Fixture for Hyperelastic Materials”, 2011 ASME International Mechanical Engineering Congress & Exposition, Denver, CO, November 2011.
  • DeBartolo, E.A., and Robinson, R.J., “A Freshman Engineering Curriculum Integrating Design and Experimentation”, International Journal of Mechanical Engineering Education, vol. 35, pp. 91-107, 2007.
585-475-2152

Currently Teaching

EEEE-497
3 Credits
MSD-I is the first half of a two-semester design course oriented to the solution of engineering problems. The mission is to enhance engineering education through a capstone design experience that integrates engineering theory, principles and processes within a collaborative environment. Working in multidisciplinary teams and following an engineering design process, students will assess customer needs and engineering specifications, evaluate concepts, resolve major technical hurdles, and employ rigorous engineering principles to design a prototype which is fully tested and documented.
EEEE-498
3 Credits
MSD-II is the second half of a two-semester design course oriented to the solution of engineering problems. The mission is to enhance engineering education through a capstone design experience that integrates engineering theory, principles and processes within a collaborative environment. Working in multidisciplinary teams and following an engineering design process, students will assess customer needs and engineering specifications, evaluate concepts, resolve major technical hurdles, and employ rigorous engineering principles to design a prototype which is fully tested and documented.
ISEE-498
3 Credits
This is a two course sequence oriented to the solution of real world engineering design problems. This is a capstone learning experience that integrates engineering theory, principles, and processes within a collaborative environment. Multidisciplinary student teams follow an engineering design process, which includes assessing customer needs, developing engineering specifications, generating and evaluating concepts, choosing an approach, completing systems and subsystems designs, and implementing the design to the extent feasible, for example by building and testing a prototype or implementing a chosen set of improvements to a process.
ISEE-497
3 Credits
This is a two course sequence oriented to the solution of real world engineering design problems. This is a capstone learning experience that integrates engineering theory, principles, and processes within a collaborative environment. Multidisciplinary student teams follow an engineering design process, which includes assessing customer needs, developing engineering specifications, generating and evaluating concepts, choosing an approach, completing systems and subsystems designs, and implementing the design to the extent feasible, for example by building and testing a prototype or implementing a chosen set of improvements to a process.
CMPE-497
3 Credits
This is the first half of a two-semester design course oriented to the solution of engineering problems. The mission is to enhance engineering education through a capstone design experience that integrates engineering theory, principles and processes within a collaborative environment. Working in multidisciplinary teams and following an engineering design process, students will assess customer needs and engineering specifications, evaluate concepts, resolve major technical hurdles, and employ rigorous engineering principles to design a prototype which is fully tested and documented. Students may propose their own projects, which may have a primarily computer engineering focus and team, and which may begin with an entrepreneurial experience to establish the scope of the project for potential market and realistic prototype.
CMPE-498
3 Credits
This is the second half of a two-semester design course oriented to the solution of engineering problems. The mission is to enhance engineering education through a capstone design experience that integrates engineering theory, principles and processes within a collaborative environment. Working in multidisciplinary teams and following an engineering design process, students will assess customer needs and engineering specifications, evaluate concepts, resolve major technical hurdles, and employ rigorous engineering principles to design a prototype which is fully tested and documented.
MECE-497
3 Credits
The first of a two-course capstone design sequence. Students work in multidisciplinary design teams in an environment approximating an industrial setting. Emphasis is placed on teamwork and on developing good oral, written and interpersonal communication skills. In this course, student teams develop their proposed final design of a mechanical system after identifying possible alternative concepts. The final design must be supported by sound engineering analyses and by engineering drawings necessary to build a prototype. This course is intended to be taken as a capstone design experience near the conclusion of the student's program of study.
MECE-498
3 Credits
The second of the two-course capstone design sequence. The same student teams from Senior Design I return to build and test a working prototype of their previously developed final design. Continued emphasis is placed on teamwork and on developing good oral, written and interpersonal communication skills.
BIME-497
3 Credits
This is the first of a two course sequence oriented to the solution of real world engineering design problems. This is a capstone learning experience that integrates engineering theory, principles, and processes within a collaborative environment. Multidisciplinary student teams follow an engineering design process, which includes assessing customer needs, developing engineering specifications, generating and evaluating concepts, choosing an approach, completing systems and subsystems designs, and implementing the design to the extent feasible, for example by building and testing a prototype or implementing a chosen set of improvements to a process.
BIME-498
3 Credits
This is the second of a two course sequence oriented to the solution of real world engineering design problems. This is a capstone learning experience that integrates engineering theory, principles, and processes within a collaborative environment. Multidisciplinary student teams follow an engineering design process, which includes assessing customer needs, developing engineering specifications, generating and evaluating concepts, choosing an approach, completing systems and subsystems designs, and implementing the design to the extent feasible, for example by building and testing a prototype or implementing a chosen set of improvements to a process.

Select Scholarship

Published Conference Proceedings
Sullivan, Christopher, Elizabeth A. DeBartolo, and Kathleen Lamkin-Kennard. "A Wearable Gait Monitor and Terrain Prediction System." Proceedings of the 2013 ASME Summer Bioengineering Conference, June 26-29 2013, Sunriver OR. Ed. Ram Devireddy. New York, NY: n.p., Web.
Schiotis, Patricia, et al. "Un-Tethered, Active Ankle Foot Orthotic." Proceedings of the 2013 ASME Summer Bioengineering Conference, June 26-29 2013, Sunriver OR. Ed. Ram Devireddy. New York, NY: n.p., Web.
Streeter, Patrick, et al. "Air Muscle Powered Ankle Foot Orthotic." Proceedings of the 2013 ASME Summer Bioengineering Conference, June 26-29 2013, Sunriver OR. Ed. Ram Devireddy. New York, NY: n.p., Web.
Walsh, Michael P., et al. "Sonar Class Adaptive Sailing Jib Transfer Bench." Proceedings of the 2013 ASME Summer Bioengineering Conference, June 26-29 2013, Sunriver OR. Ed. Ram Devireddy. New York, NY: n.p., Web.
Gomes, Mario W. and Elizabeth A. DeBartolo. "Team-Based Design-and-Build Projects in a Large Freshman Mechanical Engineering Class." Proceedings of the 2013 ASEE Annual Conference and Explosition, June 23-26 2013, Atlanta GA. Ed. Patti Greenwalt. Washington, DC: n.p., Web.
DeBartolo, Elizabeth A., Stephen Boedo, and Matthew Kasemer. "Laboratory Activities to Illustrate the Importance of Low Cycle Fatigue." Proceedings of the 2013 ASEE Annual Conference and Explosition, June 23-26 2013, Atlanta GA. Ed. Patti Greenwalt. Washington, DC: n.p., Web.
Sullivan, Christopher, Elizabeth DeBartolo, and Kathleen Lamkin-Kennard. "Terrain Characterization Using Modified RANSAC Analysis of Human Gait Data." Proceedings of the ASME Summer Bioengineering Conference. June 2012. Fajardo, Puerto Rico. Ed. David Steinman. New York, NY: ASME, Print.
DeBartolo, Elizabeth, Margaret Bailey, and Risa Robinson. "A Workshop to Improve Communication Skills for Teaching Assistants." Proceedings of the ASEE Annual Conference & Exposition. June 2012. San Antonio, TX. Ed. Na'ilah Metwally. Washington, DC: ASEE, Web.
Smoger, Lowell, Mario Gomes, and Elizabeth DeBartolo. "Minimum Constraint Design Analysis and Modification of a Biaxial Tensile Test Fixture for Hyperelastic Materials." Proceedings of the 2011 ASME International Mechanical Engineering Congress & Exposition, Denver, CO, November 2011. Ed. Aaron Knobloch. New York: ASME, Web.