Applied Statistics Advanced certificate

977f9a44-7bd5-44c9-a316-34410866b190 | 6250605

Engineers, analysts, and other professionals develop a deeper understanding of the statistical methods related to their fields.


Overview

The advanced certificate in applied statistics is designed for engineers, scientists, analysts, and other professionals who want a solid education in the statistical methods that are most closely related to their work. Courses are available both on-campus and online to accommodate diverse schedules.

The program requires two core courses and two elective courses. 

What is a graduate certificate?

A graduate certificate, also called an advanced certificate, is a selection of up to five graduate level courses in a particular area of study. It can serve as a stand-alone credential that provides expertise is a specific topic that enhances your professional knowledge base, or it can serve as the entry point to a master's degree. Some students complete an advanced certificate and apply those credit hours later toward a master's degree. 

This program is also offered online. View Online Option.

Curriculum for Applied Statistics Adv. Cert.

Applied Statistics, advanced certificate, typical course sequence

Course Sem. Cr. Hrs.
First Year
STAT-641
Applied Linear Models - Regression
A course that studies how a response variable is related to a set of predictor variables. Regression techniques provide a foundation for the analysis of observational data and provide insight into the analysis of data from designed experiments. Topics include happenstance data versus designed experiments, simple linear regression, the matrix approach to simple and multiple linear regression, analysis of residuals, transformations, weighted least squares, polynomial models, influence diagnostics, dummy variables, selection of best linear models, nonlinear estimation, and model building. (This course is restricted to students in APPSTAT-MS or SMPPI-ACT.) Lecture 3 (Fall, Spring).
3
STAT-642
Applied Linear Models - ANOVA
This course introduces students to analysis of models with categorical factors, with emphasis on interpretation. Topics include the role of statistics in scientific studies, fixed and random effects, mixed models, covariates, hierarchical models, and repeated measures. (This class is restricted to students in the APPSTAT-MS, SMPPI-ACT, STATQL-ACT or MMSI-MS programs.) Lecture 3 (Fall, Spring).
3
 
Electives
6
Total Semester Credit Hours
12

 

Electives

Course
ISEE-682
Lean Six Sigma Fundamentals
This course presents the philosophy and methods that enable participants to develop quality strategies and drive process improvements. The fundamental elements of Lean Six Sigma are covered along with many problem solving and statistical tools that are valuable in driving process improvements in a broad range of business environments and industries. Successful completion of this course is accompanied by “yellow belt” certification and provides a solid foundation for those who also wish to pursue a “green belt.” (Green belt certification requires completion of an approved project which is beyond the scope of this course). (This course is restricted to degree-seeking graduate students and dual degree BS/MS or BS/ME students in KGCOE.) Lecture 3 (Fall, Spring, Summer).
STAT-621
Statistical Quality Control
A practical course designed to provide in-depth understanding of the principles and practices of statistical process control, process capability, and acceptance sampling. Topics include: statistical concepts relating to processes, Shewhart charts for attribute and variables data, CUSUM charts, EWMA charts, process capability studies, attribute and variables acceptance sampling techniques. (This class is restricted to students in the APPSTAT-MS, SMPPI-ACT, STATQL-ACT or MMSI-MS programs.) Lecture 3 (Fall, Spring).
STAT-670
Design of Experiments
How to design and analyze experiments, with an emphasis on applications in engineering and the physical sciences. Topics include the role of statistics in scientific experimentation; general principles of design, including randomization, replication, and blocking; replicated and unreplicated two-level factorial designs; two-level fractional-factorial designs; response surface designs. Lecture 3 (Fall, Spring).
STAT-745
Predictive Analytics
This course is designed to provide the student with solid practical skills in implementing basic statistical and machine learning techniques for the purpose of predictive analytics. Throughout the course, many real world case studies are used to motivate and explain the strengths and appropriateness of each method of interest. In those case studies, students will learn how to apply data cleaning, visualization, and other exploratory data analysis tools to a variety of real world complex data. Students will gain experience with reproducibility and documentation of computational projects and with developing basic data products for predictive analytics. The following techniques will be implemented and then tested with cross-validation: regularization in linear models, regression and smoothing splines, k-nearest neighbor, and tree-based methods, including random forest. (Prerequisite: This class is restricted to students in APPSTAT-MS and SMPPI-ACT who have successfully completed STAT 611 and STAT-741 or equivalent courses.) Lecture 3 (Spring).
STAT-747
Principles of Statistical Data Mining
This course covers topics such as clustering, classification and regression trees, multiple linear regression under various conditions, logistic regression, PCA and kernel PCA, model-based clustering via mixture of gaussians, spectral clustering, text mining, neural networks, support vector machines, multidimensional scaling, variable selection, model selection, k-means clustering, k-nearest neighbors classifiers, statistical tools for modern machine learning and data mining, naïve Bayes classifiers, variance reduction methods (bagging) and ensemble methods for predictive optimality. (Prerequisites: This class is restricted to students in APPSTAT-MS or SMPPI-ACT who have successfully completed STAT-611, STAT-731 and STAT-741 or equivalent courses.) Lecture 3 (Fall, Spring).
STAT-753
Nonparametric Statistics and Bootstrapping
The emphasis of this course is how to make valid statistical inference in situations when the typical parametric assumptions no longer hold, with an emphasis on applications. This includes certain analyses based on rank and/or ordinal data and resampling (bootstrapping) techniques. The course provides a review of hypothesis testing and confidence-interval construction. Topics based on ranks or ordinal data include: sign and Wilcoxon signed-rank tests, Mann-Whitney and Friedman tests, runs tests, chi-square tests, rank correlation, rank order tests, Kolmogorov-Smirnov statistics. Topics based on bootstrapping include: estimating bias and variability, confidence interval methods and tests of hypothesis. (This course is restricted to students in APPSTAT-MS or SMPPI-ACT.) Lecture 3 (Summer).
STAT-756
Multivariate Analysis
Multivariate data are characterized by multiple responses. This course concentrates on the mathematical and statistical theory that underlies the analysis of multivariate data. Some important applied methods are covered. Topics include matrix algebra, the multivariate normal model, multivariate t-tests, repeated measures, MANOVA principal components, factor analysis, clustering, and discriminant analysis. (Prerequisites: This class is restricted to students in APPSTAT-MS or SMPPI-ACT who have successfully completed STAT-611 or equivalent course.) Lecture 3 (Fall, Spring).
STAT-773
Times Series Analysis and Forecasting
This course is designed to provide the student with a solid practical hands-on introduction to the fundamentals of time series analysis and forecasting. Topics include stationarity, filtering, differencing, time series decomposition, time series regression, exponential smoothing, and Box-Jenkins techniques. Within each of these we will discuss seasonal and nonseasonal models. (Prerequisites: This class is restricted to students in APPSTAT-MS or SMPPI-ACT who have successfully completed STAT-741 or equivalent course.) Lecture 3 (Fall, Spring).
STAT-775
Design and Analysis of Clinical Trials
This is a graduate level survey course that stresses the concepts of statistical design and analysis for clinical trials. Topics include the design, implementation, and analysis of trials, including treatment allocation and randomization, factorial designs, cross-over designs, sample size and power, reporting and publishing, etc. SAS for Windows statistical software will be used throughout the course for data analysis. (This course is restricted to students in APPSTAT-MS or SMPPI-ACT.) Lecture 3 (Fall, Spring).
STAT-784
Categorical Data Analysis
The course develops statistical methods for modeling and analysis of data for which the response variable is categorical. Topics include: contingency tables, matched pair analysis, Fisher's exact test, logistic regression, analysis of odds ratios, log linear models, multi-categorical logit models, ordinal and paired response analysis. (Prerequisites: This class is restricted to students in APPSTAT-MS or SMPPI-ACT who have successfully completed STAT-741 or equivalent course.) Lecture 3 (Fall, Spring).

Admission Requirements

To be considered for admission to the advanced certificate in applied statistics, candidates should fulfill the following requirements:

  • Complete a graduate application.
  • Hold a baccalaureate degree (or equivalent) from an accredited university or college.
  • Have satisfactory background in mathematics and statistics (two courses in probability and statistics). 
  • Submit official transcripts (in English) of all previously completed undergraduate and graduate course work.
  • Have a minimum cumulative GPA of 3.0 (or equivalent) (recommended but not required).
  • GRE scores are not required. However, in cases where there may be some question regarding the capability of the applicant to complete the program. Applicants may be asked to submit scores to strengthen their application.
  • Submit a current resume or curriculum vitae.
  • Submit two letters of recommendation from academic or professional sources.
  • International applicants whose native language is not English must submit scores from the TOEFL, IELTS, or PTE. A minimum TOEFL score of 79 (internet-based) is required. A minimum IELTS score of 6.5 is required. The English language test score requirement is waived for native speakers of English or for those submitting transcripts from degrees earned at American institutions.

Learn about admissions, cost, and financial aid