Climate Change: An Interdisciplinary Problem Immersion

33f093a2-343a-4e7d-81fc-e86f97a3cbc2 | 6219648

Overview

This interdisciplinary immersion introduces students to the scientific, technological, and social issues surrounding global environmental climate change.

Notes about this immersion:

  • This immersion is closed to students majoring in environmental science or environmental sustainability, health and safety.
  • Students are required to complete at least one course at the 300-level or above as part of the immersion.

The program code for Climate Change: An Interdisciplinary Problem Immersion is CLIMATE-IM.

Featured Profiles

Curriculum for Climate Change: An Interdisciplinary Problem Immersion

Course
Required Courses
Choose one of the following courses:
   CHEM-531
   Climate Change: Science Technology & Policy
This multidisciplinary course will provide students with diverse perspectives on global climate change issues, providing a survey of important aspects of the problem. Topics include atmospheric chemistry, climate modeling, ecological impacts and feedbacks, economics of climate change, international climate policies, and social and environmental justice. The course will include a variety of instructors and guest lecturers, providing an overview of the complex and inter-related nature of global climate change. (This class is restricted to undergraduate students with at least 3rd year standing.) Lecture 3 (Spring).
   ENVS-531
   Climate Change: Science Technology & Policy
This multidisciplinary course will provide students with diverse perspectives on global climate change issues, providing a survey of important aspects of the problem. Topics include atmospheric chemistry, climate modeling, ecological impacts and feedbacks, economics of climate change, international climate policies, and social and environmental justice. The course will include a variety of instructors and guest lecturers, providing an overview of the complex and inter-related nature of global climate change. (This class is restricted to undergraduate students with at least 3rd year standing.) Lecture 3 (Spring).
   PUBL-531
   Climate Change: Science, Technology and Policy  
This multidisciplinary course will provide students with diverse perspectives on global climate change issues, providing a survey of important aspects of the problem. Topics include atmospheric chemistry, climate modeling, ecological impacts and feedbacks, economics of climate change, international climate policies, and social and environmental justice. The course will include a variety of instructors and guest lecturers, providing an overview of the complex and inter-related nature of global climate change. (This class is restricted to undergraduate students with at least 3rd year standing.) Lecture 3 (Spring).
Electives
Choose one of the following courses:
   HIST-345
   Environmental Disasters
This class will survey the history environmental disasters (from floods to oil spills) in modern American and global society. Students will study several specific disasters (for example, Hurricane Katrina, the Great Midwestern Floods of the 1990s, Love Canal, and the Haitian Earthquake of 2008) and analyze a series of broader themes that illuminate their meaning, including the economic impact of various disasters, the legal and political ramifications of modern disasters, and the social and cultural meaning of disasters in various societies. Lecture (Fall).
   PHIL-308
   Environmental Philosophy
Environmental philosophy examines the ethical, metaphysical, and social justice questions surrounding human interactions with nature and the management of natural resources. This course explores the nature and source of environmental values and how environmental goals are achieved through policy decisions. We evaluate and apply philosophical and ethical theory to environmental issues such as endangered species, climate change, wilderness preservation, sustainability, and environmental justice. Lecture (Fall).
   PUBL-530
   Energy Policy
This course provides an overview of energy resources, technologies, and policies designed to ensure clean, stable supplies of energy for the future. The course evaluates the impacts of fossil fuel, renewable energy, and hydrogen technologies on society and how public policies can be used to influence their development. The development of U.S. energy policy is of particular concern, although a global perspective will be integrated throughout the course. Lecture (Spring).
   SOIS-333
   Wicked Problems
This course will expose students to approaching and working on wicked problems - unstructured, multidisciplinary issues lacking clear right or wrong answers. The course will introduce key skills for handling unstructured problems such as whole systems thinking, estimation and assumptions, valuation, and problem solving techniques, with the majority of the semester focused on a specific topic (wicked problem) and team case study. Students will work in teams to research and address one aspect or subset of the wicked problem at hand to join collectively with the results of all teams to form a more complete overall solution to the wicked problem. (This class is restricted to undergraduate students with at least 3rd year standing.) Lecture 4 (Fall, Spring).
   STSO-326
   History of Ecology and Environmentalism
This course explores the history of ecological science, from the eighteenth century to the present, and it features the political use of ecological ideas in environmental debates, from the 19th century to the present. We investigate how social and political ideas have influenced ecological science, how ecological concepts have influenced Western politics and society, and how different generations of ecological researchers have viewed their role in society. Lecture (Fall).
   STSO-421
   Environmental Policy
This course introduces students to federal, state, and local environmental policies and the various policy paths leading to their establishment. Students will understand how societal values inform the content of environmental policies and the impacts, in turn, of these policies on society. In addition, the class will explore how environmental economics informs the new tools of environmental policy. The course covers a range of environmental policies at the U.S. and international levels addressing problems such as air and water pollution, climate change, energy use, and community sustainability. Lecture (Spring).
   STSO-422
   Great Lakes 
This course utilizes the Great Lakes Basin as an integrating context for understanding global environmental issues. Examining the basin through an interdisciplinary environmental lens the class applies social science approaches to environmental problem solving. Students assess the local, regional, national and international scope of Great Lakes environmental issues through lecture, role-play, and field experiences and consider the importance of government action, public policy, ethics, economics, sociology, history, and engineering while applying social science analysis skills such as surveys, interviews, and content analysis to better understand the depth of local environmental problems and their potential solutions. Environmental science majors prepare a proposal for an environmental consulting project. Lecture (Fall).
Choose one of the following courses:
   ENVS-101
   Concepts of Environmental Science
This course is the foundation course for the Environmental Science major and presents an integrated approach to the interrelated, interdisciplinary principles of environmental science through lecture, case studies and active participation. In this course, the focus will be on sustainability as the foundation for problem solving while investigating a number of environmental issues and establishing environmental literacy. Topics may include biodiversity, ecosystems, pollution, energy, and global climate change. To demonstrate the interdisciplinary methodology of environmental science, elements of government/political science/policy, ethics, economics, sociology, history and engineering are embedded in the scientific matrix used to present this course. Lecture 3 (Fall, Spring).
   ENVS-111
   Soil Science
This is an introductory course on soil science, covering concepts such as soil taxonomy, soil ecology, physical soil properties, soil formation and geomorphology, and soil conservation. The lecture portion of the course will consist of in-class demonstrations and exercises, discussion groups, and traditional lecture materials. Lab exercises will focus on field sampling techniques and bench analyses, soil texture and partial size analyses, basic soil chemistry properties, land use planning, and spatial analyses. Lab 3, Lecture 3 (Fall).
   ENVS-250
   Applications of Geographic Information Systems
Through hands-on projects and case studies, this course illustrates concepts and applications of raster and vector geographic information systems (GIS) in a variety of disciplines, such as environmental science, biology, geology, geography, sociology, and economics. Students will learn how to use GIS software and spatial analyses, plan a project, create a database, and conduct an independent project. Students should have completed a foundational course in their major and be comfortable working with computers. Experience with programming is also useful. (Foundational course in student's major field of study or permission of instructor). Lec/Lab 6 (Fall).
   ENVS-301
   Environmental Science Field Skills
Environmental Science Field Skills presents an integrated approach to the interrelated, interdisciplinary principles of environmental science through case studies, site visits and field work. In this course, the focus will be on learning methods for environmental analysis, including experimental design, water and soil quality, primary production and biodiversity, land use/land cover change and ecosystem restoration. The course will culminate in a stressed stream analysis of a local watershed. Additional topics may include geographic information systems, wetlands, environmental education and sustainable food production. The interdisciplinary nature of environmental science will be illustrated through elements of government/political science/policy, ethics, economics, sociology, history and engineering. (Prerequisites: ENVS-201 and CHMG-141 and BIOL-122 or equivalent courses.) Lab 3, Lecture 3 (Spring).
   ENVS-305
   Urban Ecology
Urban Ecology focuses first on the natural systems of urban areas and how those systems function in an undisturbed setting, with an emphasis on the types of ecosystem functions and services natural systems provide. Second, the course focuses on how humans have impacted those natural systems through urban development, and how those impacts can be mitigated or avoided by using the examples provided by nature to influence more sustainable development and maintain (or even enhance) ecological functions and services in urban landscapes. The course will examine and compare examples of several urban settings from around the world, paying particular attention to the connections between the physical, social and cultural aspects of sustainability. The course will meet during spring semester, with a required 2.5-week study tour to Malmö, Sweden after graduation in May. Students must apply through the Office of Study Abroad and an additional fee applies to the course. (Prerequisites: This class is restricted to students with at least 2nd year standing.) Lecture 2 (Spring).
   ESHS-360
   Sustainable World Water Supply
The World Health Organization estimates that one in eight people do not have access to a safe drinking water supply. The U.S. State Department has stated that armed conflict over water rights is possible on many of the world’s river systems including the Nile, Tigris/Euphrates, Brahmaputra-Jamuna, and Mekong. What is the cause of these problems and how will changes to the hydrologic cycle and world water supply brought about by climate change affect them? Students will learn about the hydrologic cycle, the general characteristics of surface water and groundwater, and global patterns of water use. Students will learn about the health, economic, and social consequences of drought and flooding, and the effect climate change is having on water supply in arid countries. Laws and government regulation of water withdrawal and use will be covered, as will techniques to extend the available water supply. Students will consider the positive and negative consequences of increasing the sustainability of the water supply through efficiency, conservation, inter-basin transfer, water use export, grey and black water reuse, urban runoff capture, and the creation of fresh water through desalination. Lecture 3 (Fall).