Applied Statistics and Actuarial Science BS

Applied Statistics and Actuarial Science, BS degree, typical course sequence

Course Sem. Cr. Hrs.
First Year
CSCI-101
General Education – Elective: Principles of Computing
This course is designed to introduce students to the central ideas of computing. Students will engage in activities that show how computing changes the world and impacts daily lives. Students will develop step-by-step written solutions to basic problems and implement their solutions using a programming language. Assignments will be completed both individually and in small teams. Students will be required to demonstrate oral and written communication skills through such assignments as short papers, homeworks, group discussions and debates, and development of a term paper. Lecture 3 (Fall).
3
MATH-181
General Education – Mathematical Perspective A: Project-Based Calculus I
This is the first in a two-course sequence intended for students majoring in mathematics, science, or engineering. It emphasizes the understanding of concepts, and using them to solve physical problems. The course covers functions, limits, continuity, the derivative, rules of differentiation, applications of the derivative, Riemann sums, definite integrals, and indefinite integrals. (Prerequisite: A- or better in MATH-111 or A- or better in ((NMTH-260 or NMTH-272 or NMTH-275) and NMTH-220) or a math placement exam score greater than or equal to 70 or department permission to enroll in this class.) Lecture 6 (Fall, Spring, Summer).
4
MATH-182
General Education – Mathematical Perspective B: Project-Based Calculus II
This is the second in a two-course sequence intended for students majoring in mathematics, science, or engineering. It emphasizes the understanding of concepts, and using them to solve physical problems. The course covers techniques of integration including integration by parts, partial fractions, improper integrals, applications of integration, representing functions by infinite series, convergence and divergence of series, parametric curves, and polar coordinates. (Prerequisites: C- or better in (MATH-181 or MATH-173 or 1016-282) or (MATH-171 and MATH-180) or equivalent course(s).) Lecture 6 (Fall, Spring, Summer).
4
MATH-199
Mathematics and Statistics Seminar
This course introduces the programs within the School of Mathematical Sciences, and provides an introduction to math and statistics software. The course provides practice in technical writing. Seminar 1 (Fall).
1
YOPS-10
RIT 365: RIT Connections
RIT 365 students participate in experiential learning opportunities designed to launch them into their career at RIT, support them in making multiple and varied connections across the university, and immerse them in processes of competency development. Students will plan for and reflect on their first-year experiences, receive feedback, and develop a personal plan for future action in order to develop foundational self-awareness and recognize broad-based professional competencies. Lecture 1 (Fall, Spring).
0
 
General Education – Elective
3
 
General Education – First-Year Writing (WI)
3
 
General Education – Ethical Perspective
3
 
General Education – Artistic Perspective
3
 
General Education – Natural Science Inquiry Perspective‡
4
Second Year
MATH-200
Discrete Mathematics and Introduction to Proofs
This course prepares students for professions that use mathematics in daily practice, and for mathematics courses beyond the introductory level where it is essential to communicate effectively in the language of mathematics. It covers various methods of mathematical proof, starting with basic techniques in propositional and predicate calculus and set theory, and then moving to applications in advanced mathematics. (Prerequisite: MATH-173 or MATH-182 or MATH-182A or equivalent course.) Lecture 3, Recitation 4 (Fall).
3
MATH-251
Probability and Statistics I
This course introduces sample spaces and events, axioms of probability, counting techniques, conditional probability and independence, distributions of discrete and continuous random variables, joint distributions (discrete and continuous), the central limit theorem, descriptive statistics, interval estimation, and applications of probability and statistics to real-world problems. A statistical package such as Minitab or R is used for data analysis and statistical applications. (Prerequisites: MATH-173 or MATH-182 or MATH 182A or equivalent course.) Lecture 3 (Fall, Spring, Summer).
3
MATH-252
Probability and Statistics II
This course covers basic statistical concepts, sampling theory, hypothesis testing, confidence intervals, point estimation, and simple linear regression. The statistical software package MINITAB will be used for data analysis and statistical applications. (Prerequisites: STAT-251 or MATH-251 or equivalent course.) Lecture 3 (Fall, Spring).
3
MATH-399
Mathematical Sciences Job Search Seminar
This course helps students prepare to search for co-op or full-time employment. Students will learn strategies for conducting a successful job search and transitioning into the work world. The course meets one hour each week for five weeks. Lecture 1 (Fall, Spring).
0
Choose one of the following:
4
   MATH-221
   General Education – Elective: Multivariable and Vector Calculus
This course is principally a study of the calculus of functions of two or more variables, but also includes a study of vectors, vector-valued functions and their derivatives. The course covers limits, partial derivatives, multiple integrals, Stokes' Theorem, Green's Theorem, the Divergence Theorem, and applications in physics. Credit cannot be granted for both this course and MATH-219. (Prerequisite: C- or better MATH-173 or MATH-182 or MATH-182A or equivalent course.) Lecture 4 (Fall, Spring, Summer).
 
   MATH-221H
   General Education – Elective: Honors Multivariable and Vector Calculus
 
Choose one of the following:
3
   MATH-241
   Linear Algebra
This course is an introduction to the basic concepts of linear algebra, and techniques of matrix manipulation. Topics include linear transformations, Gaussian elimination, matrix arithmetic, determinants, vector spaces, linear independence, basis, null space, row space, and column space of a matrix, eigenvalues, eigenvectors, change of basis, similarity and diagonalization. Various applications are studied throughout the course. (Prerequisites: MATH-190 or MATH-200 or MATH-219 or MATH-220 or MATH-221 or MATH-221H or equivalent course.) Lecture 3 (Fall, Spring).
 
   MATH-241H
   Honors Linear Algebra
 
 
Open Elective
3
 
General Education – Elective
3
 
General Education – Global Perspective
3
 
General Education – Social Perspective
3
 
General Education – Scientific Principles Perspective‡
4
Third Year
MATH-255
Actuarial Mathematics
This course provides challenging problems in probability whose solutions require a combination of skills that one acquires in a typical mathematical statistics curriculum. Course work synthesizes basic, essential problem-solving ideas and techniques as they apply to actuarial mathematics and the first actuarial exam. (Prerequisites: MATH-251 or 1016-345 or equivalent course.) Lecture 3 (Spring).
3
MATH-261
Topics in the Mathematics of Finance
This course examines concepts in finance from a mathematical viewpoint. It includes topics such as the Black-Scholes model, financial derivatives, the binomial model, and an introduction to stochastic calculus. Although the course is mathematical in nature, only a background in calculus (including Taylor series) and basic probability is assumed; other mathematical concepts and numerical methods are introduced as needed. (Prerequisites: (MATH-219 or MATH-221 or MATH-221H) and (STAT-145 or STAT-145H or MATH-251) or equivalent courses.) Lecture 3 .
3
STAT-305
Regression Analysis
This course covers regression techniques with applications to the type of problems encountered in real-world situations. It includes use of the statistical software SAS. Topics include a review of simple linear regression, residual analysis, multiple regression, matrix approach to regression, model selection procedures, and various other models as time permits. (Prerequisites: MATH-241 and MATH-252 or equivalent courses.) Lecture 3 (Spring).
3
STAT-325
Design of Experiments (WI-PR)
This course is a study of the design and analysis of experiments. It includes extensive use of statistical software. Topics include single-factor analysis of variance, multiple comparisons and model validation, multifactor factorial designs, fixed, random and mixed models, expected mean square calculations, confounding, randomized block designs, and other designs and topics as time permits. (Prerequisites: STAT-205 or MATH-252 or equivalent courses.) Lecture 3 (Fall).
3
 
Program Electives**
9
 
General Education – Immersion 1, 2
6
 
General Education – Elective
3
Fourth Year
STAT-405
Mathematical Statistics I
This course provides a brief review of basic probability concepts and distribution theory. It covers mathematical properties of distributions needed for statistical inference. (Prerequisites: STAT-205 or MATH-252 or equivalent courses.) Lecture 3 (Fall).
3
STAT-406
Mathematical Statistics II
This course is a continuation of STAT-405 covering classical and Bayesian methods in estimation theory, chi-square test, Neyman-Pearson lemma, mathematical justification of standard test procedures, sufficient statistics, and further topics in statistical inference. (Prerequisites: STAT-405 or equivalent course.) Lecture 3 (Spring).
3
STAT-500
Senior Capstone in Statistics
The course introduces the student to statistical situations not encountered previously in courses of study. It integrates and synthesizes concepts in statistical theory with applications. Topics include open-ended analysis of data, review of statistical literature on current techniques and practice of statistics, development of statistical communication skills, and the use of statistical software tools in data analysis. Students may work individually or in a group. Each student is required to learn and use a statistical technique beyond what is covered in the previous courses. Student teams are expected to introduce the method in a presentation and to prepare a comprehensive, professional report detailing the statistical method and its application to a data set. (Prerequisites: STAT-325 or equivalent course. Corequisites: STAT-305 or equivalent course.) Lecture 3 (Spring).
3
 
General Education – Immersion 3
3
 
Program Electives**
6
 
Open Electives
6
 
General Education – Electives
6
Total Semester Credit Hours
120

Please see General Education Curriculum (GE) for more information.

(WI) Refers to a writing intensive course within the major.

Please see Wellness Education Requirement for more information. Students completing bachelor's degrees are required to complete two different Wellness courses.

‡ Students will satisfy this requirement by taking either University Physics I (PHYS-211) and University Physics II (PHYS-212) or General & Analytical Chemistry I and Lab (CHMG-141/145) and General & Analytical Chemistry II and Lab (CHMG-142/146) or General Biology I and Lab (BIOL-101/103) and General Biology II and Lab (BIOL-102/104).

** Three of the five program electives must be from the following list of courses: Stochastic Processes (MATH-505), Introduction to Time Series (STAT-335), Nonparametric Statistics (STAT-345), Multivariate Analysis (STAT-425), Statistical Software (STAT-511), Statistical Quality Control (STAT-521), Data Mining (STAT-547), Survey Design and Analysis (STAT-572), Categorical Data Analysis (STAT-584). A program elective is any MATH or STAT course with a course number higher than 250.

Accelerated Dual-Degree Programs

Today’s careers require advanced degrees grounded in real-world experience. RIT’s Combined Accelerated Pathways enable you to earn both a bachelor’s and a master’s degree in as little as five years of study. You’ll earn two degrees while gaining the valuable, hands-on experience that comes from co-ops, internships, research, study abroad, and more. Learn how a Combined Accelerated Pathway can prepare you for your future, faster. 

Applied Statistics and Actuarial Science, BS degree/Applied and Computational Mathematics (thesis option), MS degree, typical course sequence

Course Sem. Cr. Hrs.
First Year
CSCI-101
Principles of Computing
This course is designed to introduce students to the central ideas of computing. Students will engage in activities that show how computing changes the world and impacts daily lives. Students will develop step-by-step written solutions to basic problems and implement their solutions using a programming language. Assignments will be completed both individually and in small teams. Students will be required to demonstrate oral and written communication skills through such assignments as short papers, homeworks, group discussions and debates, and development of a term paper. Lecture 3 (Fall).
3
MATH-181
LAS Perspective 7A: Project-Based Calculus I
This is the first in a two-course sequence intended for students majoring in mathematics, science, or engineering. It emphasizes the understanding of concepts, and using them to solve physical problems. The course covers functions, limits, continuity, the derivative, rules of differentiation, applications of the derivative, Riemann sums, definite integrals, and indefinite integrals. (Prerequisite: A- or better in MATH-111 or A- or better in ((NMTH-260 or NMTH-272 or NMTH-275) and NMTH-220) or a math placement exam score greater than or equal to 70 or department permission to enroll in this class.) Lecture 6 (Fall, Spring, Summer).
4
MATH-182
LAS Perspective 7B: Project-Based Calculus II
This is the second in a two-course sequence intended for students majoring in mathematics, science, or engineering. It emphasizes the understanding of concepts, and using them to solve physical problems. The course covers techniques of integration including integration by parts, partial fractions, improper integrals, applications of integration, representing functions by infinite series, convergence and divergence of series, parametric curves, and polar coordinates. (Prerequisites: C- or better in (MATH-181 or MATH-173 or 1016-282) or (MATH-171 and MATH-180) or equivalent course(s).) Lecture 6 (Fall, Spring, Summer).
4
MATH-199
Mathematics and Statistics Seminar
This course introduces the programs within the School of Mathematical Sciences, and provides an introduction to math and statistics software. The course provides practice in technical writing. Seminar 1 (Fall).
1
YOPS-10
RIT 365: RIT Connections
RIT 365 students participate in experiential learning opportunities designed to launch them into their career at RIT, support them in making multiple and varied connections across the university, and immerse them in processes of competency development. Students will plan for and reflect on their first-year experiences, receive feedback, and develop a personal plan for future action in order to develop foundational self-awareness and recognize broad-based professional competencies. Lecture 1 (Fall, Spring).
0
 
LAS Elective
3
 
First Year Writing (WI)
3
 
LAS Perspective 1 (ethical)
3
 
LAS Perspective 2 (artistic)
3
 
LAS Perspective 5‡ (natural science inquiry)
4
 
LAS Perspective 6‡ (scientific principles)
4
 
Wellness Education*
0
Second Year
MATH-200
Discrete Mathematics and Introduction to Proofs
This course prepares students for professions that use mathematics in daily practice, and for mathematics courses beyond the introductory level where it is essential to communicate effectively in the language of mathematics. It covers various methods of mathematical proof, starting with basic techniques in propositional and predicate calculus and set theory, and then moving to applications in advanced mathematics. (Prerequisite: MATH-173 or MATH-182 or MATH-182A or equivalent course.) Lecture 3, Recitation 4 (Fall).
3
MATH-221
Multivariable and Vector Calculus
This course is principally a study of the calculus of functions of two or more variables, but also includes a study of vectors, vector-valued functions and their derivatives. The course covers limits, partial derivatives, multiple integrals, Stokes' Theorem, Green's Theorem, the Divergence Theorem, and applications in physics. Credit cannot be granted for both this course and MATH-219. (Prerequisite: C- or better MATH-173 or MATH-182 or MATH-182A or equivalent course.) Lecture 4 (Fall, Spring, Summer).
4
MATH-231
Differential Equations
This course is an introduction to the study of ordinary differential equations and their applications. Topics include solutions to first order equations and linear second order equations, method of undetermined coefficients, variation of parameters, linear independence and the Wronskian, vibrating systems, and Laplace transforms. (Prerequisite: MATH-173 or MATH-182 or MATH-182A or equivalent course.) Lecture 3 (Fall, Spring, Summer).
3
MATH-241
Linear Algebra I
This course is an introduction to the basic concepts of linear algebra, and techniques of matrix manipulation. Topics include linear transformations, Gaussian elimination, matrix arithmetic, determinants, vector spaces, linear independence, basis, null space, row space, and column space of a matrix, eigenvalues, eigenvectors, change of basis, similarity and diagonalization. Various applications are studied throughout the course. (Prerequisites: MATH-190 or MATH-200 or MATH-219 or MATH-220 or MATH-221 or MATH-221H or equivalent course.) Lecture 3 (Fall, Spring).
3
MATH-251
Probability and Statistics I
This course introduces sample spaces and events, axioms of probability, counting techniques, conditional probability and independence, distributions of discrete and continuous random variables, joint distributions (discrete and continuous), the central limit theorem, descriptive statistics, interval estimation, and applications of probability and statistics to real-world problems. A statistical package such as Minitab or R is used for data analysis and statistical applications. (Prerequisites: MATH-173 or MATH-182 or MATH 182A or equivalent course.) Lecture 3 (Fall, Spring, Summer).
3
MATH-252
Probability and Statistics II
This course covers basic statistical concepts, sampling theory, hypothesis testing, confidence intervals, point estimation, and simple linear regression. The statistical software package MINITAB will be used for data analysis and statistical applications. (Prerequisites: STAT-251 or MATH-251 or equivalent course.) Lecture 3 (Fall, Spring).
3
MATH-399
Mathematical Science Job Search Seminar
This course helps students prepare to search for co-op or full-time employment. Students will learn strategies for conducting a successful job search and transitioning into the work world. The course meets one hour each week for five weeks. Lecture 1 (Fall, Spring).
0
 
LAS Immersion 1, 2
6
 
LAS Perspective 3 (global)
3
 
LAS Perspective 4 (social)
3
Third Year
MATH-255
Actuarial Mathematics
This course provides challenging problems in probability whose solutions require a combination of skills that one acquires in a typical mathematical statistics curriculum. Course work synthesizes basic, essential problem-solving ideas and techniques as they apply to actuarial mathematics and the first actuarial exam. (Prerequisites: MATH-251 or 1016-345 or equivalent course.) Lecture 3 (Spring).
3
MATH-261
Topics in the Mathematics of Finance
This course examines concepts in finance from a mathematical viewpoint. It includes topics such as the Black-Scholes model, financial derivatives, the binomial model, and an introduction to stochastic calculus. Although the course is mathematical in nature, only a background in calculus (including Taylor series) and basic probability is assumed; other mathematical concepts and numerical methods are introduced as needed. (Prerequisites: (MATH-219 or MATH-221 or MATH-221H) and (STAT-145 or STAT-145H or MATH-251) or equivalent courses.) Lecture 3 .
3
STAT-305
Regression Analysis
This course covers regression techniques with applications to the type of problems encountered in real-world situations. It includes use of the statistical software SAS. Topics include a review of simple linear regression, residual analysis, multiple regression, matrix approach to regression, model selection procedures, and various other models as time permits. (Prerequisites: MATH-241 and MATH-252 or equivalent courses.) Lecture 3 (Spring).
3
STAT-325
Design of Experiments (WI)
This course is a study of the design and analysis of experiments. It includes extensive use of statistical software. Topics include single-factor analysis of variance, multiple comparisons and model validation, multifactor factorial designs, fixed, random and mixed models, expected mean square calculations, confounding, randomized block designs, and other designs and topics as time permits. (Prerequisites: STAT-205 or MATH-252 or equivalent courses.) Lecture 3 (Fall).
3
STAT-511
Statistical Software
This course is an introduction to the statistical-software package R, which is often used in professional practice. Some comparisons with other statistical-software packages will also be made. Topics include: data structures; reading and writing data; data manipulation, subsetting, reshaping, sorting, and merging; conditional execution and looping; built-in functions; creation of new functions; graphics; matrices and arrays; simulations and app development with Shiny. (Prerequisites: MATH-252 or equivalent course.) Lecture 3 (Fall, Spring).
3
 
Free Electives
6
 
LAS Immersion 3
3
 
Program Electives
9
Fourth Year
MATH-606
Graduate Seminar I
The course prepares students to engage in activities necessary for independent mathematical research and introduces students to a broad range of active interdisciplinary programs related to applied mathematics. (This course is restricted to students in the ACMTH-MS or MATHML-PHD programs.) Lecture 2 (Fall).
1
MATH-607
Graduate Seminar II
This course is a continuation of Graduate Seminar I. It prepares students to engage in activities necessary for independent mathematical research and introduces them to a broad range of active interdisciplinary programs related to applied mathematics. (Prerequisite: MATH-606 or equivalent course or students in the ACMTH-MS or MATHML-PHD programs.) Lecture 2 (Spring).
1
STAT-405
Mathematical Statistics I
This course provides a brief review of basic probability concepts and distribution theory. It covers mathematical properties of distributions needed for statistical inference. (Prerequisites: STAT-205 or MATH-252 or equivalent courses.) Lecture 3 (Fall).
3
STAT-406
Mathematical Statistics II
This course is a continuation of STAT-405 covering classical and Bayesian methods in estimation theory, chi-square test, Neyman-Pearson lemma, mathematical justification of standard test procedures, sufficient statistics, and further topics in statistical inference. (Prerequisites: STAT-405 or equivalent course.) Lecture 3 (Spring).
3
STAT-500
Senior Capstone in Statistics
The course introduces the student to statistical situations not encountered previously in courses of study. It integrates and synthesizes concepts in statistical theory with applications. Topics include open-ended analysis of data, review of statistical literature on current techniques and practice of statistics, development of statistical communication skills, and the use of statistical software tools in data analysis. Students may work individually or in a group. Each student is required to learn and use a statistical technique beyond what is covered in the previous courses. Student teams are expected to introduce the method in a presentation and to prepare a comprehensive, professional report detailing the statistical method and its application to a data set. (Prerequisites: STAT-325 or equivalent course. Corequisites: STAT-305 or equivalent course.) Lecture 3 (Spring).
3
 
Math Graduate Core Courses
9
 
LAS Electives
12
Fifth Year
MATH-790
Research and Thesis
Masters-level research by the candidate on an appropriate topic as arranged between the candidate and the research advisor. (This course is restricted to students in the ACMTH-MS or MATHML-PHD programs.) Thesis (Fall, Spring, Summer).
7
 
Math Graduate Core Course
3
 
Graduate Electives
9
Total Semester Credit Hours
147

Please see General Education Curriculum–Liberal Arts and Sciences (LAS) for more information.

(WI) Refers to a writing intensive course within the major.

* Please see Wellness Education Requirement for more information. Students completing bachelor's degrees are required to complete two different Wellness courses.

‡ Students will satisfy this requirement by taking either University Physics I (PHYS-211) and University Physics II (PHYS-212) or General & Analytical Chemistry I and Lab (CHMG-141/145) and General & Analytical Chemistry II and Lab (CHMG-142/146) or General Biology I and Lab (BIOL-101/103) and General Biology II and Lab (BIOL-102/104).

Applied Statistics and Actuarial Science, BS degree/Applied and Computational Mathematics (project option), MS degree, typical course sequence

Course Sem. Cr. Hrs.
First Year
CSCI-101
Principles of Computing
This course is designed to introduce students to the central ideas of computing. Students will engage in activities that show how computing changes the world and impacts daily lives. Students will develop step-by-step written solutions to basic problems and implement their solutions using a programming language. Assignments will be completed both individually and in small teams. Students will be required to demonstrate oral and written communication skills through such assignments as short papers, homeworks, group discussions and debates, and development of a term paper. Lecture 3 (Fall).
3
MATH-181
General Education - Mathematical Perspective A: Project-Based Calculus I
This is the first in a two-course sequence intended for students majoring in mathematics, science, or engineering. It emphasizes the understanding of concepts, and using them to solve physical problems. The course covers functions, limits, continuity, the derivative, rules of differentiation, applications of the derivative, Riemann sums, definite integrals, and indefinite integrals. (Prerequisite: A- or better in MATH-111 or A- or better in ((NMTH-260 or NMTH-272 or NMTH-275) and NMTH-220) or a math placement exam score greater than or equal to 70 or department permission to enroll in this class.) Lecture 6 (Fall, Spring, Summer).
4
MATH-182
General Education - Mathematical Perspective B: Project-Based Calculus II
This is the second in a two-course sequence intended for students majoring in mathematics, science, or engineering. It emphasizes the understanding of concepts, and using them to solve physical problems. The course covers techniques of integration including integration by parts, partial fractions, improper integrals, applications of integration, representing functions by infinite series, convergence and divergence of series, parametric curves, and polar coordinates. (Prerequisites: C- or better in (MATH-181 or MATH-173 or 1016-282) or (MATH-171 and MATH-180) or equivalent course(s).) Lecture 6 (Fall, Spring, Summer).
4
MATH-199
Mathematics and Statistics Seminar
This course introduces the programs within the School of Mathematical Sciences, and provides an introduction to math and statistics software. The course provides practice in technical writing. Seminar 1 (Fall).
1
YOPS-10
RIT 365: RIT Connections
RIT 365 students participate in experiential learning opportunities designed to launch them into their career at RIT, support them in making multiple and varied connections across the university, and immerse them in processes of competency development. Students will plan for and reflect on their first-year experiences, receive feedback, and develop a personal plan for future action in order to develop foundational self-awareness and recognize broad-based professional competencies. Lecture 1 (Fall, Spring).
0
 
General Education - Elective
3
 
General Education - First Year Writing (WI)
3
 
General Education - Artistic Perspective
3
 
General Education - Ethical Perspective
3
 
General Education - Natural Science Inquiry Perspective‡
4
 
General Education - Scientific Principles Perspective‡
4
Second Year
MATH-200
Discrete Mathematics and Introduction to Proofs
This course prepares students for professions that use mathematics in daily practice, and for mathematics courses beyond the introductory level where it is essential to communicate effectively in the language of mathematics. It covers various methods of mathematical proof, starting with basic techniques in propositional and predicate calculus and set theory, and then moving to applications in advanced mathematics. (Prerequisite: MATH-173 or MATH-182 or MATH-182A or equivalent course.) Lecture 3, Recitation 4 (Fall).
3
Choose one of the following:
4
   MATH-221
   Multivariable and Vector Calculus
This course is principally a study of the calculus of functions of two or more variables, but also includes a study of vectors, vector-valued functions and their derivatives. The course covers limits, partial derivatives, multiple integrals, Stokes' Theorem, Green's Theorem, the Divergence Theorem, and applications in physics. Credit cannot be granted for both this course and MATH-219. (Prerequisite: C- or better MATH-173 or MATH-182 or MATH-182A or equivalent course.) Lecture 4 (Fall, Spring, Summer).
 
   MATH-221H
   Honors Multivariable and Vector Calculus
 
MATH-231
Differential Equations
This course is an introduction to the study of ordinary differential equations and their applications. Topics include solutions to first order equations and linear second order equations, method of undetermined coefficients, variation of parameters, linear independence and the Wronskian, vibrating systems, and Laplace transforms. (Prerequisite: MATH-173 or MATH-182 or MATH-182A or equivalent course.) Lecture 3 (Fall, Spring, Summer).
3
Choose one of the following:
3
   MATH-241 
   Linear Algebra
This course is an introduction to the basic concepts of linear algebra, and techniques of matrix manipulation. Topics include linear transformations, Gaussian elimination, matrix arithmetic, determinants, vector spaces, linear independence, basis, null space, row space, and column space of a matrix, eigenvalues, eigenvectors, change of basis, similarity and diagonalization. Various applications are studied throughout the course. (Prerequisites: MATH-190 or MATH-200 or MATH-219 or MATH-220 or MATH-221 or MATH-221H or equivalent course.) Lecture 3 (Fall, Spring).
 
   MATH-241H
   Honor Linear Algebra
 
MATH-251
Probability and Statistics I
This course introduces sample spaces and events, axioms of probability, counting techniques, conditional probability and independence, distributions of discrete and continuous random variables, joint distributions (discrete and continuous), the central limit theorem, descriptive statistics, interval estimation, and applications of probability and statistics to real-world problems. A statistical package such as Minitab or R is used for data analysis and statistical applications. (Prerequisites: MATH-173 or MATH-182 or MATH 182A or equivalent course.) Lecture 3 (Fall, Spring, Summer).
3
MATH-252
Probability and Statistics II
This course covers basic statistical concepts, sampling theory, hypothesis testing, confidence intervals, point estimation, and simple linear regression. The statistical software package MINITAB will be used for data analysis and statistical applications. (Prerequisites: STAT-251 or MATH-251 or equivalent course.) Lecture 3 (Fall, Spring).
3
MATH-399
Mathematical Science Job Search Seminar
This course helps students prepare to search for co-op or full-time employment. Students will learn strategies for conducting a successful job search and transitioning into the work world. The course meets one hour each week for five weeks. Lecture 1 (Fall, Spring).
0
 
General Education - Immersion 1, 2
6
 
General Education - Global Perspective
3
 
General Education - Social Perspective
3
Third Year
MATH-255
Actuarial Mathematics
This course provides challenging problems in probability whose solutions require a combination of skills that one acquires in a typical mathematical statistics curriculum. Course work synthesizes basic, essential problem-solving ideas and techniques as they apply to actuarial mathematics and the first actuarial exam. (Prerequisites: MATH-251 or 1016-345 or equivalent course.) Lecture 3 (Spring).
3
MATH-261
Topics in the Mathematics of Finance
This course examines concepts in finance from a mathematical viewpoint. It includes topics such as the Black-Scholes model, financial derivatives, the binomial model, and an introduction to stochastic calculus. Although the course is mathematical in nature, only a background in calculus (including Taylor series) and basic probability is assumed; other mathematical concepts and numerical methods are introduced as needed. (Prerequisites: (MATH-219 or MATH-221 or MATH-221H) and (STAT-145 or STAT-145H or MATH-251) or equivalent courses.) Lecture 3 .
3
STAT-305
Regression Analysis
This course covers regression techniques with applications to the type of problems encountered in real-world situations. It includes use of the statistical software SAS. Topics include a review of simple linear regression, residual analysis, multiple regression, matrix approach to regression, model selection procedures, and various other models as time permits. (Prerequisites: MATH-241 and MATH-252 or equivalent courses.) Lecture 3 (Spring).
3
STAT-325
Design of Experiments (WI)
This course is a study of the design and analysis of experiments. It includes extensive use of statistical software. Topics include single-factor analysis of variance, multiple comparisons and model validation, multifactor factorial designs, fixed, random and mixed models, expected mean square calculations, confounding, randomized block designs, and other designs and topics as time permits. (Prerequisites: STAT-205 or MATH-252 or equivalent courses.) Lecture 3 (Fall).
3
 
Open Electives
6
 
General Education - Immersion 3
3
 
Program Electives
9
Fourth Year
MATH-606
Graduate Seminar I
The course prepares students to engage in activities necessary for independent mathematical research and introduces students to a broad range of active interdisciplinary programs related to applied mathematics. (This course is restricted to students in the ACMTH-MS or MATHML-PHD programs.) Lecture 2 (Fall).
1
MATH-607
Graduate Seminar II
This course is a continuation of Graduate Seminar I. It prepares students to engage in activities necessary for independent mathematical research and introduces them to a broad range of active interdisciplinary programs related to applied mathematics. (Prerequisite: MATH-606 or equivalent course or students in the ACMTH-MS or MATHML-PHD programs.) Lecture 2 (Spring).
1
STAT-405
Mathematical Statistics I
This course provides a brief review of basic probability concepts and distribution theory. It covers mathematical properties of distributions needed for statistical inference. (Prerequisites: STAT-205 or MATH-252 or equivalent courses.) Lecture 3 (Fall).
3
STAT-406
Mathematical Statistics II
This course is a continuation of STAT-405 covering classical and Bayesian methods in estimation theory, chi-square test, Neyman-Pearson lemma, mathematical justification of standard test procedures, sufficient statistics, and further topics in statistical inference. (Prerequisites: STAT-405 or equivalent course.) Lecture 3 (Spring).
3
STAT-500
Senior Capstone in Statistics
The course introduces the student to statistical situations not encountered previously in courses of study. It integrates and synthesizes concepts in statistical theory with applications. Topics include open-ended analysis of data, review of statistical literature on current techniques and practice of statistics, development of statistical communication skills, and the use of statistical software tools in data analysis. Students may work individually or in a group. Each student is required to learn and use a statistical technique beyond what is covered in the previous courses. Student teams are expected to introduce the method in a presentation and to prepare a comprehensive, professional report detailing the statistical method and its application to a data set. (Prerequisites: STAT-325 or equivalent course. Corequisites: STAT-305 or equivalent course.) Lecture 3 (Spring).
3
 
Math Graduate Core Courses
9
 
General Education - Electives
9
 
Open Elective
3
Fifth Year
MATH-790
Research & Thesis
Masters-level research by the candidate on an appropriate topic as arranged between the candidate and the research advisor. (This course is restricted to students in the ACMTH-MS or MATHML-PHD programs.) Thesis (Fall, Spring, Summer).
4
 
Graduate Electives
15
Total Semester Credit Hours
144

Please see General Education Curriculum for more information.

(WI) Refers to a writing intensive course within the major.

* Please see Wellness Education Requirement for more information. Students completing bachelor's degrees are required to complete two different Wellness courses.

‡ Students will satisfy this requirement by taking either University Physics I (PHYS-211) and University Physics II (PHYS-212) or General & Analytical Chemistry I and Lab (CHMG-141/145) and General & Analytical Chemistry II and Lab (CHMG-142/146) or General Biology I and Lab (BIOL-101/103) and General Biology II and Lab (BIOL-102/104).

Applied Statistics and Actuarial Science, BS degree/Applied Statistics, MS degree, typical course sequence

Course Sem. Cr. Hrs.
First Year
CSCI-101
General Education – Elective: Principles of Computing
This course is designed to introduce students to the central ideas of computing. Students will engage in activities that show how computing changes the world and impacts daily lives. Students will develop step-by-step written solutions to basic problems and implement their solutions using a programming language. Assignments will be completed both individually and in small teams. Students will be required to demonstrate oral and written communication skills through such assignments as short papers, homeworks, group discussions and debates, and development of a term paper. Lecture 3 (Fall).
3
MATH-181
General Education – Mathematical Perspective A: Project-Based Calculus I
This is the first in a two-course sequence intended for students majoring in mathematics, science, or engineering. It emphasizes the understanding of concepts, and using them to solve physical problems. The course covers functions, limits, continuity, the derivative, rules of differentiation, applications of the derivative, Riemann sums, definite integrals, and indefinite integrals. (Prerequisite: A- or better in MATH-111 or A- or better in ((NMTH-260 or NMTH-272 or NMTH-275) and NMTH-220) or a math placement exam score greater than or equal to 70 or department permission to enroll in this class.) Lecture 6 (Fall, Spring, Summer).
4
MATH-182
General Education – Mathematical Perspective B: Project-Based Calculus II
This is the second in a two-course sequence intended for students majoring in mathematics, science, or engineering. It emphasizes the understanding of concepts, and using them to solve physical problems. The course covers techniques of integration including integration by parts, partial fractions, improper integrals, applications of integration, representing functions by infinite series, convergence and divergence of series, parametric curves, and polar coordinates. (Prerequisites: C- or better in (MATH-181 or MATH-173 or 1016-282) or (MATH-171 and MATH-180) or equivalent course(s).) Lecture 6 (Fall, Spring, Summer).
4
MATH-199
Mathematics and Statistics Seminar I
This course introduces the programs within the School of Mathematical Sciences, and provides an introduction to math and statistics software. The course provides practice in technical writing. Seminar 1 (Fall).
1
YOPS-10
RIT 365: RIT Connections
RIT 365 students participate in experiential learning opportunities designed to launch them into their career at RIT, support them in making multiple and varied connections across the university, and immerse them in processes of competency development. Students will plan for and reflect on their first-year experiences, receive feedback, and develop a personal plan for future action in order to develop foundational self-awareness and recognize broad-based professional competencies. Lecture 1 (Fall, Spring).
0
 
General Education – Elective
3
 
General Education – First-Year Writing (WI)
3
 
General Education – Ethical Perspective
3
 
General Education – Artistic Perspective
3
 
General Education – Natural Science Inquiry Perspective‡
4
Second Year
MATH-200
Discrete Mathematics and Introduction to Proofs
This course prepares students for professions that use mathematics in daily practice, and for mathematics courses beyond the introductory level where it is essential to communicate effectively in the language of mathematics. It covers various methods of mathematical proof, starting with basic techniques in propositional and predicate calculus and set theory, and then moving to applications in advanced mathematics. (Prerequisite: MATH-173 or MATH-182 or MATH-182A or equivalent course.) Lecture 3, Recitation 4 (Fall).
3
MATH-251
Probability and Statistics I
This course introduces sample spaces and events, axioms of probability, counting techniques, conditional probability and independence, distributions of discrete and continuous random variables, joint distributions (discrete and continuous), the central limit theorem, descriptive statistics, interval estimation, and applications of probability and statistics to real-world problems. A statistical package such as Minitab or R is used for data analysis and statistical applications. (Prerequisites: MATH-173 or MATH-182 or MATH 182A or equivalent course.) Lecture 3 (Fall, Spring, Summer).
3
MATH-252
Probability and Statistics II
This course covers basic statistical concepts, sampling theory, hypothesis testing, confidence intervals, point estimation, and simple linear regression. The statistical software package MINITAB will be used for data analysis and statistical applications. (Prerequisites: STAT-251 or MATH-251 or equivalent course.) Lecture 3 (Fall, Spring).
3
MATH-399
Mathematical Science Job Search Seminar
This course helps students prepare to search for co-op or full-time employment. Students will learn strategies for conducting a successful job search and transitioning into the work world. The course meets one hour each week for five weeks. Lecture 1 (Fall, Spring).
0
Choose one of the following:
4
   MATH-221
   General Education – Elective: Multivariable and Vector Calculus
This course is principally a study of the calculus of functions of two or more variables, but also includes a study of vectors, vector-valued functions and their derivatives. The course covers limits, partial derivatives, multiple integrals, Stokes' Theorem, Green's Theorem, the Divergence Theorem, and applications in physics. Credit cannot be granted for both this course and MATH-219. (Prerequisite: C- or better MATH-173 or MATH-182 or MATH-182A or equivalent course.) Lecture 4 (Fall, Spring, Summer).
 
   MATH-221H
   General Education – Elective: Honors Multivariable and Vector Calculus
 
Choose one of the following:
3
   MATH-241
   Linear Algebra
This course is an introduction to the basic concepts of linear algebra, and techniques of matrix manipulation. Topics include linear transformations, Gaussian elimination, matrix arithmetic, determinants, vector spaces, linear independence, basis, null space, row space, and column space of a matrix, eigenvalues, eigenvectors, change of basis, similarity and diagonalization. Various applications are studied throughout the course. (Prerequisites: MATH-190 or MATH-200 or MATH-219 or MATH-220 or MATH-221 or MATH-221H or equivalent course.) Lecture 3 (Fall, Spring).
 
   MATH-241H
   Honors Linear Algebra
 
 
General Education – Global Perspective
3
 
General Education – Social Perspective
3
 
General Education – Scientific Principles Perspective‡
4
 
General Education – Elective
3
 
Open Elective
3
Third Year
MATH-255
Actuarial Mathematics
This course provides challenging problems in probability whose solutions require a combination of skills that one acquires in a typical mathematical statistics curriculum. Course work synthesizes basic, essential problem-solving ideas and techniques as they apply to actuarial mathematics and the first actuarial exam. (Prerequisites: MATH-251 or 1016-345 or equivalent course.) Lecture 3 (Spring).
3
MATH-261
Topics in the Mathematics of Finance
This course examines concepts in finance from a mathematical viewpoint. It includes topics such as the Black-Scholes model, financial derivatives, the binomial model, and an introduction to stochastic calculus. Although the course is mathematical in nature, only a background in calculus (including Taylor series) and basic probability is assumed; other mathematical concepts and numerical methods are introduced as needed. (Prerequisites: (MATH-219 or MATH-221 or MATH-221H) and (STAT-145 or STAT-145H or MATH-251) or equivalent courses.) Lecture 3 .
3
STAT-305
Regression Analysis
This course covers regression techniques with applications to the type of problems encountered in real-world situations. It includes use of the statistical software SAS. Topics include a review of simple linear regression, residual analysis, multiple regression, matrix approach to regression, model selection procedures, and various other models as time permits. (Prerequisites: MATH-241 and MATH-252 or equivalent courses.) Lecture 3 (Spring).
3
STAT-325
Design of Experiments (WI-PR)
This course is a study of the design and analysis of experiments. It includes extensive use of statistical software. Topics include single-factor analysis of variance, multiple comparisons and model validation, multifactor factorial designs, fixed, random and mixed models, expected mean square calculations, confounding, randomized block designs, and other designs and topics as time permits. (Prerequisites: STAT-205 or MATH-252 or equivalent courses.) Lecture 3 (Fall).
3
 
General Education – Immersion 1, 2
3
 
General Education – Elective
3
 
Program Electives
9
Fourth Year
STAT-405
Mathematical Statistics I
This course provides a brief review of basic probability concepts and distribution theory. It covers mathematical properties of distributions needed for statistical inference. (Prerequisites: STAT-205 or MATH-252 or equivalent courses.) Lecture 3 (Fall).
3
STAT-406
Mathematical Statistics II
This course is a continuation of STAT-405 covering classical and Bayesian methods in estimation theory, chi-square test, Neyman-Pearson lemma, mathematical justification of standard test procedures, sufficient statistics, and further topics in statistical inference. (Prerequisites: STAT-405 or equivalent course.) Lecture 3 (Spring).
3
STAT-500
Senior Capstone in Statistics
The course introduces the student to statistical situations not encountered previously in courses of study. It integrates and synthesizes concepts in statistical theory with applications. Topics include open-ended analysis of data, review of statistical literature on current techniques and practice of statistics, development of statistical communication skills, and the use of statistical software tools in data analysis. Students may work individually or in a group. Each student is required to learn and use a statistical technique beyond what is covered in the previous courses. Student teams are expected to introduce the method in a presentation and to prepare a comprehensive, professional report detailing the statistical method and its application to a data set. (Prerequisites: STAT-325 or equivalent course. Corequisites: STAT-305 or equivalent course.) Lecture 3 (Spring).
3
STAT-641
Applied Linear Models – Regression
A course that studies how a response variable is related to a set of predictor variables. Regression techniques provide a foundation for the analysis of observational data and provide insight into the analysis of data from designed experiments. Topics include happenstance data versus designed experiments, simple linear regression, the matrix approach to simple and multiple linear regression, analysis of residuals, transformations, weighted least squares, polynomial models, influence diagnostics, dummy variables, selection of best linear models, nonlinear estimation, and model building. (This course is restricted to students in APPSTAT-MS or SMPPI-ACT.) Lecture 3 (Fall, Spring).
3
STAT-642
Applied Linear Models – ANOVA
This course introduces students to analysis of models with categorical factors, with emphasis on interpretation. Topics include the role of statistics in scientific studies, fixed and random effects, mixed models, covariates, hierarchical models, and repeated measures. (This class is restricted to students in the APPSTAT-MS, SMPPI-ACT, STATQL-ACT or MMSI-MS programs.) Lecture 3 (Fall, Spring).
3
 
Program Electives
6
 
General Education – Electives
6
 
General Education – Immersion 3
3
 
Open Electives
6
Fifth Year
STAT-790
Capstone/Thesis
This course is a graduate course for students enrolled in the Thesis/Project track of the MS Applied Statistics Program. (Enrollment in this course requires permission from the Director of Graduate Programs for Applied Statistics.) (Enrollment in this course requires permission from the department offering the course.) Thesis (Fall, Spring, Summer).
6
 
Statistics Graduate Electives
21
Total Semester Credit Hours
150

Please see General Education Curriculum (GE) for more information.

(WI) Refers to a writing intensive course within the major.

Please see Wellness Education Requirement for more information. Students completing bachelor's degrees are required to complete two different Wellness courses.

‡ Students will satisfy this requirement by taking either University Physics I (PHYS-211) and University Physics II (PHYS-212) or General & Analytical Chemistry I and Lab (CHMG-141/145) and General & Analytical Chemistry II and Lab (CHMG-142/146) or General Biology I and Lab (BIOL-101/103) and General Biology II and Lab (BIOL-102/104).