Engineering Management Master of Engineering Degree

An engineering management master's degree that combines your engineering knowledge with business insights to successfully manage an engineering or technology focused company.


100%

Outcome Rate of RIT Graduates

$73.5K

Average First-Year Salary of RIT Graduates


Overview

  • An engineering management master's degree that prepares engineers for career advancement in leadership and management.
  • Master the business knowledge most commonly needed by today's engineers.
  • Gain the skills you need to become an entrepreneurial engineer.

Engineers are problem solvers. They actively seek our problems in order to design and develop solutions that lead to innovative products, improvements to people's lives, and solutions that better the world. But engineers don't always speak that same language as business leaders. That's when an engineering management master's degree can make a profound difference.

RIT's Engineering Management Master's Degree

An engineering management master's degree combines technical expertise in engineering with skills in management and operations to focus on the management of engineering and technical enterprises. You will learn how to manage engineering projects and the business processes through which technologies is applied. The objective of our engineering management degree is to provide you with a solid foundation in the areas commonly needed by managers–leadership, organizational behavior, communication, human and financial resources, accounting, project management, and more–who oversee engineers and engineering projects. 

A Collaborative Master's of Management for Engineers

RIT is a world leader in providing an exceptional engineering education. In addition, we house a nationally recognized business school. As a result, RIT's Kate Gleason College of Engineering and our Saunders College of Business have collaborated to develop a master's of management for engineers that blends the technical expertise of engineering with the operations and leadership skills of business. This combination acknowledges the dual role many engineers play as both a technologist and a manager. 


Students are also interested in: Sustainable Engineering MS, Industrial and Systems Engineering MS, Manufacturing Leadership MS, Business Administration MBA

Loading...

Careers and Cooperative Education

Typical Job Titles

Advanced Project Engineer Engineering Leadership Development Program Member
Industrial Engineer Internal Audit Analyst
Manufacturing Engineer Mass Production Quality Engineer
Operations Management Leadership Program Production Planner
Supply Chain Analyst Systems Engineer

Salary and Career Information for Engineering Management ME

Cooperative Education

What’s different about RIT’s engineering education? It’s the opportunity to complete engineering co-ops and internships with top companies in every single industry. You’ll earn more than a master’s degree. You’ll gain real-world career experience that sets you apart.

Cooperative education, or co-op for short, is full-time, paid work experience in your engineering field of study. And it sets RIT engineering graduates apart from their competitors. RIT co-op is designed for your success.

Cooperative education is optional but strongly encouraged for graduate students in the engineering management master’s program.

Curriculum for Engineering Management ME

Engineering Management, ME degree, typical course sequence

Course Sem. Cr. Hrs.
First Year
ACCT-794
Cost Management in Technical Organizations
A first course in accounting for students in technical disciplines. Topics include the distinction between external and internal accounting, cost behavior, product costing, profitability analysis, performance evaluation, capital budgeting, and transfer pricing. Emphasis is on issues encountered in technology intensive manufacturing organizations. *Note: This course is not intended for Saunders College of Business students. (Enrollment in this course requires permission from the department offering the course.) Lecture 3 (Spring).
3
ISEE-750
Systems and Project Management
Systems and Project Management ensures progress toward objectives, proper deployment and conservation of human and financial resources, and achievement of cost and schedule targets. The focus of the course is on the utilization of a diverse set of project management methods and tools. Topics include strategic project management, project and organization learning, cost, schedule planning and control, structuring of performance measures and metrics, technical teams and project management, information technology support of teams, risk management, and process control. Course delivery consists of lectures, speakers, case studies, and experience sharing, and reinforces collaborative project-based learning and continuous improvement. (Prerequisites: ISEE-350 or equivalent course or graduate standing in ISEE BS/MS, ISEE BS/ME, ISEE-MS, ISEE-ME, SUSTAIN-MS, SUSTAIN-ME, ENGMGT-ME, PRODDEV-MS or MFLEAD-MS programs.) Lecture 3 (Fall).
3
ISEE-760
Design of Experiments
This course presents an in-depth study of the primary concepts of experimental design. Its applied approach uses theoretical tools acquired in other mathematics and statistics courses. Emphasis is placed on the role of replication and randomization in experimentation. Numerous designs and design strategies are reviewed and implications on data analysis are discussed. Topics include: consideration of type 1 and type 2 errors in experimentation, sample size determination, completely randomized designs, randomized complete block designs, blocking and confounding in experiments, Latin square and Graeco Latin square designs, general factorial designs, the 2k factorial design system, the 3k factorial design system, fractional factorial designs, Taguchi experimentation. (Prerequisites: ISEE-325 or STAT-252 or MATH-252 or equivalent course or students in ISEE-MS, ISEE-ME, SUSTAIN-MS, SUSTAIN-ME or ENGMGT-ME programs.) Lecture 3 (Spring).
3
ISEE-771
Engineering of Systems I
The engineering of a system is focused on the identification of value and the value chain, requirements management and engineering, understanding the limitations of current systems, the development of the overall concept, and continually improving the robustness of the defined solution. EOS I & II is a 2-semester course sequence focused on the creation of systems that generate value for both the customer and the enterprise. Through systematic analysis and synthesis methods, novel solutions to problems are proposed and selected. This first course in the sequence focuses on the definition of the system requirements by systematic analysis of the existing problems, issues and solutions, to create an improved vision for a new system. Based on this new vision, new high-level solutions will be identified and selected for (hypothetical) further development. The focus is to learn systems engineering through a focus on an actual artifact (This course is restricted to students in the ISEE BS/MS, ISEE BS/ME, ISEE-MS, ISEE-ME, SUSTAIN-MS, SUSTAIN-ME, PRODEV-MS, MFLEAD-MS or ENGMGT-ME programs or those with 5th year standing in ISEE-BS or ISEEDU-BS.) Lecture 3 (Fall, Spring).
3
 
Engineering Management Elective
3
 
Elective
3
Second Year
ISEE-792
Engineering Capstone
For the Master of Engineering programs in Industrial and Systems Engineering, Engineering Management, and Sustainable Engineering. Students must investigate a discipline-related topic in a field related to industrial and systems engineering, engineering management, or sustainable engineering. The general intent of the engineering capstone is to demonstrate the students' knowledge of the integrative aspects of a particular area. The capstone should draw upon skills and knowledge acquired in the program. (This course is restricted to students in ISEE-ME, ENGMGT-ME, SUSTAIN-ME or the ISEE BS/ME programs.) Lecture 3 (Fall, Spring).
3
 
Engineering Management Electives
6
 
Elective
3
Total Semester Credit Hours
30

 

Admission Requirements

To be considered for admission to the ME program in engineering management, candidates must fulfill the following requirements:

  • Complete an online graduate application. Refer to Graduate Admission Deadlines and Requirements for information on application deadlines, entry terms, and more.
  • Submit copies of official transcript(s) (in English) of all previously completed undergraduate and graduate course work, including any transfer credit earned.
  • Hold a baccalaureate degree (or US equivalent) from an accredited university or college in engineering, mathematics, or science, from an accredited institution,
  • Recommended minimum cumulative GPA of 3.0 (or equivalent).
  • Submit a current resume or curriculum vitae.
  • Two letters of recommendation are required. Refer to Application Instructions and Requirements for additional information.
  • Not all programs require the submission of scores from entrance exams (GMAT or GRE). Please refer to the Graduate Admission Deadlines and Requirements page for more information.
  • Submit a personal statement of educational objectives. Refer to Application Instructions and Requirements for additional information.
  • International applicants whose native language is not English must submit official test scores from the TOEFL, IELTS, or PTE. Students below the minimum requirement may be considered for conditional admission. Refer to Graduate Admission Deadlines and Requirements for additional information on English requirements. International applicants may be considered for an English test requirement waiver. Refer to Additional Requirements for International Applicants to review waiver eligibility.

Learn about admissions, cost, and financial aid 

Latest News