Laboratory Science Technology Associate in occupational studies degree

cd09d84a-3189-4212-88f2-59e3ab36f55b | 128711

Overview

The laboratory science technology program, with its foundation of course sequences in chemistry, biology, and instrumental analysis, was developed primarily from an industry perspective to prepare students for employment as laboratory technicians. The program has several significant factors that set it apart, including the application of real-world analyses and a state-of-the-art instrumentation laboratory. Graduates are prepared to work in a broad range of fields, including chemical, biological, biotechnical, pharmaceutical, environmental, industrial, forensic, and food analysis. This program is available for qualified deaf and hard of hearing students. 

If you're interested in doing scientific analysis and lab work in chemical, biological, biotechnical, pharmaceutical, environmental, forensic, food or industrial fields, then the laboratory science technology program is for you. You will study in laboratory settings with experienced faculty and learn to use state-of-the-art laboratory equipment for scientific analysis. Our advanced, high-tech analytical instrumentation is equivalent to that used by scientists on the job. You get hands-on experience using this instrumentation daily.

The associate in occupational studies (AOS) degree in laboratory science technology, offered by RIT's National Technical Institute for the Deaf, is a career-focused degree program that leads to immediate entry into well-paying careers at the paraprofessional or technician level in municipal, public, private and industrial laboratories. Technicians are involved with the collection and preparation of samples and standards. They also perform instrumental, volumetric, gravimetric, and biological analyses. Additional job responsibilities may include the interpretation and reporting of experimental results and data.

Cooperative education

As a student in the laboratory science technology program, you will be required to complete a cooperative (co-op) work experience prior to graduation. You may schedule your co-op after completing your second-year academic requirements.

Industries


  • Biotech and Life Sciences

  • Chemical

  • Consumer Packaged Goods

  • Environmental Services

  • Food and Beverage

  • Manufacturing

  • Oil and Gas

  • Pharmaceuticals

Typical Job Titles

Laboratory Technician Quality Control Specialist
Assistant Research Development Scientist

Curriculum

Laboratory Science Technology, AOS degree, typical course sequence

Course Sem. Cr. Hrs.
First Year
NCAR-010
Freshman Seminar
The course provides entering NTID students with opportunities to develop/enhance academic skills, personal awareness, and community involvement in order to maximize their college experience. Students have opportunities to explore and navigate the college environment, develop/reinforce academic skills and participate in service learning opportunities. Students are encouraged to establish meaningful connections with faculty, staff and peers. The course promotes the development of plans for ongoing growth and involvement in class and in the RIT/NTID and/or broader community. Students must pass this course to earn an associates degree.
0
NENG-212
Career English I
This is the first course in a two-course sequence. It is designed to develop reading, writing, grammar, and vocabulary skills that students need for AOS course work and for the work environment. The reading and writing components are thoroughly integrated with approximately equal time being devoted to each. Grammar and vocabulary are thoroughly integrated into the reading and writing components. Course content includes general and technical articles, memorandums, letters, electronic communication, directions, work-related forms, and short report.
3
NENG-213
Career English II
This is the second course in a two-course sequence. It is designed to advance and refine reading, writing, grammar, and vocabulary skills that students need for AOS course work and for the work environment. The reading and writing components are thoroughly integrated with approximately equal time being devoted to each. Grammar and vocabulary are thoroughly integrated into the reading and writing components. Course content includes general and technical articles, memorandums, letters, electronic communication, directions, work-related forms, and short reports.
3
NLST-120
Laboratory Tools
This course introduces students to the Laboratory Science Technology (LST) program's curriculum and the laboratory tools required for success in the program and as professionals in the laboratory science field. Topics will include an introduction to historical and current issues in the field, concepts of analytical testing, basic laboratory applications, fundamental technical skills used in the laboratory, laboratory safety, laboratory notebooks and information management, scientific reference and information sources, the identification and use of laboratory equipment, maintaining a laboratory environment, concepts of quality control, and the analytical process. Students begin to organize a Laboratory Science Technology portfolio.
3
NLST-171
Fundamentals of Chemistry I
This course is an introduction to the fundamental theories and principles of chemistry governing the structure and behavior of matter at the atomic and molecular levels. The language of chemistry including nomenclature and symbolic representation is presented. Computational strategies applied to stoichiometry, reaction analysis and solution preparation are practiced. Laboratory activities focus on precision and accuracy in the collection of data. Chemical hygiene and safety procedures in the laboratory are emphasized.
3
NLST-172
Fundamentals of Chemistry II
This course is an introduction to the concepts of kinetics and thermodynamics. Chemical equilibrium and rate constants will be presented and quantified. The ideal gas law will be explored. Mathematical models will be developed and computational strategies will be applied and practiced. Laboratory activities will supplement course themes. Chemical hygiene and safety procedures in the laboratory are emphasized.
3
NLST-220
Analytical Chemistry
This course introduces quantitative analysis utilizing both gravimetric and volumetric techniques. Topics include volumetric preparation and analytical procedures, acid/base and electron transfer titrations and related computational methods, and gravimetric procedures and analyses. Standard laboratory notebook protocol will be introduced and practiced. Chemical hygiene protocol and safety procedures in the laboratory are emphasized.
4
NMTH-212
Integrated Algebra†
An intermediate algebra course consisting of a blended lecture/lab component in which non-linear functions and graphs, systems of linear equations, exponents, polynomials, roots, radicals and properties of the complex numbers are considered. There is significant emphasis on scientific and geometric models, as well as the use of graphing utilities. Students cannot earn credit for both NMTH-210 and NMTH-212.
3
NSCI-161
LAS Perspective 6 (scientific principles): Fundamentals of Biology I
This course provides students with fundamentals of cellular biology. Topics include chemical components of cells, cell structure and function, membrane transport, osmosis, cellular respiration and photosynthesis. Principles governing genetics, gene expression and reproduction are introduced. Laboratory methods used to make observations and collect data are practiced. Recording observations and analysis of data are emphasized in formal written laboratory reports.
3
NSCI-162
Fundamentals of Biology II
This course provides students with fundamentals of biological concepts and processes. Topics include plant and animal form and function, nutritional and excretory requirements, and homeostatic mechanisms and their regulation in organisms. Principles governing the concept of biological evolution and genomic evolution are introduced. Laboratory methods used to make observations and collect data are practiced. Recording observations and analysis of data are emphasized in formal written laboratory reports. Laboratory activities complement classroom activities.
3
 
Wellness Education*
0
Second Year
NLST-225
Laboratory Applications
This course continues a focus on the application of laboratory tools, techniques, procedures, and scientific theory. Course topics include study of written technical procedures, technical writing, the reporting and presentation of scientific information, and topics related to the job search process and working as a professional in the field. Students synthesize information learned in previous and concurrent courses by participating in job related simulations. A Laboratory Science Technology portfolio will continue to be developed.
3
NLST-230
Principles of Organic Chemistry
This course provides an introduction to the principles of organic chemistry. Topics include structure, nomenclature, and properties of carbon-containing molecules according to the various functional groups that are central to organic chemistry. Investigations involving chemical reactions, data collection, and qualitative and quantitative analyses provide a framework for laboratory activities. Chemical hygiene and safety procedures in the laboratory are emphasized.
4
NLST-235
Principles of Biochemistry
This course provides an introduction to the principles of biochemistry through a study of carbohydrates, lipids, amino acids, proteins, enzymes, and nucleic acids. The metabolic pathways that involve these systems will also be explored. Principles of general and organic chemistry will be emphasized through an examination of the structures, concepts, and reactions that are central to biologically important molecules.
3
NLST-240
Biotechnology I
This course prepares students to perform biotechnical applications in industry-specific fields of analysis. Standard methods, operating procedures, equipment/instrumentation, and protocols are introduced and reinforced. Topics include ethical issues in Biotechnology, DNA manipulation, protein analysis, tissue culture, and molecular diagnosis. Sampling, testing, and reporting in the field of biotechnology are covered.
3
NLST-245
Biotechnology II
This course prepares students to perform Biotechnology applications in industry, specifically as they relate to microorganisms, proteomics, and genomics. Topics include bacterial expression systems for production, purification and characterization of recombinant proteins. Study will include concepts of DNA manipulation/analysis and enzymology. Standard methods, operating procedures, and protocols are introduced and reinforced. Sampling, testing, and reporting in the fields of Biotechnology, microbiology, and molecular biology are covered.
3
NLST-250
Quantitative Instrumental Analysis
In this course students learn and apply concepts and principles of analytical testing using laboratory instruments, instrumentation theory, and procedures. Concepts surrounding spectroscopy, electroanalytical methods, advanced and automated methods of instrumental analysis are presented. Techniques including sample preparation, instrumentation set-up and maintenance, calibration, precision measurement, safety, and data collection/analysis are introduced. Selected instrumentation presented in this course include electroanalytical meters/probes, atomic and molecular spectrophotometers, and automated instrumentation.
4
NLST-255
Chemical Separations & Chromatography
In this course students learn and apply advanced concepts and principles in analytical testing using laboratory instruments/equipment, theory, and procedures as they relate to chemical separations and chromatographic methods of analysis. Techniques including sample preparation, instrumentation set-up and maintenance, calibration, precision measurement, safety, and data collection/analysis are studied. Selected techniques/instrumentation presented in this course include solid and liquid phase separations/extractions, liquid and gas chromatography, mass spectrometry, and capillary electrophoresis.
NLST-260 
Laboratory Methods
This course is a capstone to the program's focus on the application of laboratory tools, techniques, procedures, and scientific theory. Professional and ethical behavior standards in the science laboratory environment and current trends in performing analyses from advanced standard methods are central to this course. Students synthesize information learned in previous and concurrent technical courses by participating in job related simulations. This course also serves as a final mechanism for Co-op preparation. Students finalize a Laboratory Science Technology portfolio.
3
NLST-299
Co-op: Laboratory Science Technology
This cooperative work experience gives students matriculated in the Laboratory Science Technology program a practical sampling of working in the field of laboratory sciences. Students will work under the supervision of qualified professionals while performing a variety of tasks pertaining to the field.
0
Third Year
NLST-232
Laboratory Mathematics
This course addresses classic laboratory calculations and elementary descriptive statistics in the context of modern information technology and computing methods. Use of hand-held calculators and computer software to exchange, analyze and chart electronically-stored data is a central focus of this course. Study is closely coordinated with student experiences in Laboratory Science Technology courses. Topics include basic descriptive statistics with quality control applications, capture and analysis of real laboratory data, exponential and logarithmic modeling, and applications of scientific concepts.
3
 
Technical Electives‡
6
 
NTID LAS Perspective§
3
Total Semester Credit Hours
67

See NTID General Education Curriculum-Liberal Arts and Sciences (LAS) requirements for more information.

* See Wellness Education Requirement for more information. Students completing associate degrees are required to complete one Wellness course.

† Students placing above NMTH-212 can take a higher-level NMTH course or any course from a non-science LAS Perspective area.

‡ Courses that may be used as a technical elective include: Chemical Technology (NLST-270), Undergraduate Research: Laboratory Science Technology (NLST-285, with department approval), NSCI-120 or above with department approval, or NMTH-220 or above with department approval.

§ This LAS Perspective course may be from any of the following three Perspective categories: ASL-Deaf Cultural Studies; Communication, Social & Global Awareness; or Creative and Innovative Exploration.

Admission Requirements

For the career-focused AOS Degree

  • 2 years of math required
  • 1 year of science required
  • English language skills as evidenced by application materials determine associate degree options.

Specific Requirements

  • English: Placement into Career English I (NENG-212) or above. Students successfully completing AOS degrees typically enter with reading scores of 79 or higher on the NTID Reading Test and writing scores of 39 or higher on the NTID Writing Test.
  • Mathematics: Placement into Integrated Algebra (NMTH-212) or above. Typically, students entering this major will have completed at least three years of high school mathematics.
  • Science: Typically, students entering this major will have completed at least two years of high school science. Completion of high school chemistry is required.

 

Learn about admissions and financial aid