Robotics and Automation Minor


The robotics and automation minor provides students with a foundation in the professional study and practice of programming, using, and working with industrial robots and the industrial automation systems used in the manufacturing environment. It provides a broad perspective that includes automation components, automation systems (hardware and software), industrial robots (hardware and software), and specific issues to implementing industrial robotic systems in the electronics manufacturing environment. It also includes learning and practice in developing automation/robotic code to accomplish specific functions across the major industrial automation software tools.

Notes about this minor:

The plan code for Robotics and Automation Minor is RMET-MN.

Curriculum for Robotics and Automation Minor

Required Courses
Automation Control Systems
Automation Control Systems Lab
Choose one of the following
An introduction to the analysis of static structures covering free-body diagrams, forces, moments, vectors, equilibrium, friction, and analysis of structures and truss members. Applications are drawn from civil engineering technology. (Prerequisites: PHYS-111 or 1017-211 or equivalent course.) Lecture 2, Recitation 2 (Spring).
   Principles of Statics
This course provides an introduction to the analysis and design of structures and machines. Students learn to calculate unknown forces using the concept of equilibrium and free body diagrams and to calculate simple stresses and deflections for axially loaded members. Topics include forces, moments, free body diagrams, equilibrium, friction, stress, strain, and deflection. Examples are drawn from mechanical, manufacturing, and civil engineering technology. Lecture 3, Recitation 1 (Fall, Spring).
This basic course treats the equilibrium of particles and rigid bodies under the action of forces. It integrates the mathematical subjects of calculus, vector algebra and simultaneous algebraic equations with the physical concepts of equilibrium in two and three dimensions. Topics include concepts of force and moment, friction, centroids and moments of inertia, and equilibrium of trusses, frames and machines. (Prerequisites: MECE-102 or PHYS-211 or PHYS-211A or PHYS-206 or equivalent course and restricted to MECE-BS or MECEDU-BS or MECE-MN or ENGRX-UND students. Co-requisites: MATH-182 or MATH-182A or MATH-173 or equivalent course.) Lecture 3 (Fall, Spring).
Choose nine credits:
   Introduction to Digital and Microcontroller Systems
This course introduces students to the underlying building blocks of digital system and microcontroller design. Digital systems topics that are covered include: number systems, truth tables, Boolean algebra, combinational and sequential logic, and finite state machines. A microcontroller is used to teach register programming, reading and writing digital I/O, bitwise operations and bit-masking and microprocessor architecture. Laboratory exercises are designed to illustrate concepts, reinforce analysis and design skills, and develop instrumentation techniques associated with the lecture topics. Lab 2, Lecture 2 (Fall).
   Integrated Design for Manufacture & Assembly
Integrated design for manufacture and assembly manufacturing processes are expanded and applied to the design process. Part concepts will be considered for various manufacturing processes to determine which process will yield the lowest cost part that meets all product functional requirements. Students will learn the DFMA methodology for making decisions to analyze the costs associated with their product concepts. Designs will consider the tooling that is required in product build and will understand the interrelationships between decisions and the cost associated with manufacture and service of the product. At the conclusion of the course students will be able to effectively design parts and assemblies for manufacture, assembly, and service. Costing will be considered at every step of the design process. (Prerequisites: MFET-120 or NETS-120 or equivalent course.) Lecture 3 (Spring).
   Electronics Manufacturing
This course provides a thorough understanding of the technology, components, equipment, materials and manufacturing process for through hole technology and surface mount technology electronics manufacturing. Students will develop a strong foundation needed for advanced work in surface mount technology (SMT). Topics in Design for Manufacturing are also considered for high volume vs. low volume manufacturing. Students may only receive credit for this course or MFET-655, not both. (Students cannot take and receive credit for this course if they have taken MFET-655.) Lecture 3, Recitation 1 (Fall).
   Robots & Automation
   Advanced Automation Systems and Control
This course deals with the higher level of topics relating to automation control systems engineering. Learning different programming languages, troubleshooting techniques, advanced programming instructions, the use and application of Human Machine Interface (HMI) panels, analog devices uses and applications, advanced system design, networking and an introduction to Industry 4.0 are all covered in this course. (Pre-requisites: MFET-340 or equivalent course. Students cannot take and receive credit for this course if they have taken RMET-671.) Lecture 3, Recitation 1 (Spring).
   Robotics: Sensors & Vision