Biology: Cellular and Molecular Immersion - Curriculum

Biology: Cellular and Molecular Immersion

Required Course
Molecular Biology
This course will address the fundamental concepts of Molecular Biology. Class discussions, assignments, and projects will explore the structure and function of biologically important molecules (DNA, RNA and proteins) in a variety of cellular and molecular processes. Students in this course will explore the molecular interactions that facilitate the storage, maintenance and repair of DNA and processes that drive the flow of genetic information and evolution. Students in this course will gain an understanding of various molecular mechanisms, structure/function relationships, and processes as they relate to molecular biology. The foundational molecular concepts in this course will be built upon in a variety of upper-level biology courses. (Prerequisite:(BIOL-101,BIOL-102,BIOL-103&BIOL-104) or (BIOL-121&BIOL-122) or (BIOL-123,BIOL-124,BIOL-125&BIOL-126)or equivalent courses with a grade of C- or higher. Co-requisite:(CHMG-141&CHMG-145)or(CHEM-151&CHEM-155) or CHMG-131 or equivalent courses.) Lecture 3 (Fall, Spring).
Molecular Biology Lab
This laboratory course will address the fundamental concepts of Molecular Biology. Students in this laboratory will complement their understanding of core concepts in Molecular Biology through the implementation and practice of laboratory techniques used by Molecular Biologists. Laboratory techniques and projects will focus on recombinant DNA technology and the detection and tracking of biomolecules such as DNA, RNA and proteins. (Prerequisite:(BIOL-101&BIOL-102&BIOL-103&BIOL-104)or(BIOL-121&BIOL-122)or(BIOL-123&BIOL-124&BIOL-125&BIOL-126)or equivalent courses w/ grade of C- or higher. Co-requisite:BIOL-206&((CHMG-141&CHMG-145)or(CHEM-151&CHEM-155)orCHMG-131)or equivalent courses.) Lab 3 (Fall, Spring).
Choose two of the following:
   Evolutionary Biology
This course investigates the historical framework of evolutionary biology and the meaning/nature of evidence pertinent to biological evolution. Topics will include: earth history, the evolution of proteins and the genetic code, molecular evolution, neutral theory vs. selection, genetic variation, natural selection, migration, mutation, genetic drift, fitness, population dynamics and genetics, speciation, systematics and classification systems, molecular phylogenetics, the evolution of eukaryotic organisms, behavioral evolution, historical biogeography, and human evolution and variation. (Prerequisites: (BIOL-101 and BIOL-102 and BIOL-103 and BIOL-104) or (BIOL-121 and BIOL-122) or (BIOL-123 and BIOL-124 and BIOL-125 and BIOL-126) or equivalent courses.) Lecture 3, Recitation 2 (Fall).
   Cell Biology
This course will address the fundamental concepts of cell biology. Class discussions, assignments, and laboratory projects will 1) Explore the structure-function relationships that drive cellular processes at the molecular, cellular and tissue level. 2) Investigate the mechanisms of cellular signaling and the transmission of genetic information. 3) Examine energy transformation strategies and the biochemical pathways used for synthesis and breakdown of ATP and other important biomolecules. 4) Investigate the organizational strategies used by cells to form functional tissue and organ systems. (Prerequisites: (BIOL-206 and BIOL-216) or BIOL-201 or BIOL-202 or BIOG-240 or equivalent courses.) Lecture 3 (Spring).
   Introduction to Microbiology
Introduction to the principles of inheritance; the study of genes and chromosomes at molecular, cellular, organismal, and population levels. (Prerequisites: (BIOL-206 and BIOL-216) or BIOL-201 or BIOL-202 or BIOG-240 or equivalent courses.) Lecture 3, Recitation 1 (Fall, Spring, Summer).
   Developmental Biology
This course is a study of the processes of growth, differentiation and development that lead to the mature form of an organism. The course will also address how developmental biology is integrated with other aspects of biology including disease, ecology, and evolution. (Prerequisites: (BIOL-206 and BIOL-216) or BIOL-201 or BIOL-202 or BIOG-240 or equivalent courses.) Lab 3, Lecture 3 (Fall).
   Introduction to Population Genetics
This course consists of a study of DNA, genes, inheritance, genetic variation, genetic architecture, and change within and among populations. Fundamental genetics topics include DNA, gene, and chromosomal structure and function along with, transmission genetics, Mendelian inheritance patterns, sex-linked inheritance, genetic linkage, and the Hardy-Weinberg Principle. Population based topics will include genetic variation, its importance, how it originates and is maintained as well as inbreeding, random mating, mutation, migration, selection, genetic drift, the effects of small population size, fitness, population subdivision, the shifting balance theory, inter-deme selection, kin selection, neutral theory, molecular evolution, molecular clocks, multi-gene families, gene conversion, artificial selection, the genetic basis of quantitative traits and the fundamental theorem of natural selection. (Prerequisites: BIOL-265 or equivalent course.) Lecture 3 (Spring).
   Microbial and Viral Genetics
The goal of this course is to gain an understanding of the genetic systems of prokaryotes and their viruses. There are two major foci: (1) the mechanisms bacteria and their viruses employ to preserve the integrity of their genomes and regulate gene expression, and (2) the mechanisms by which these entities acquire new genetic material. The relevance of these processes to evolution and the development of new traits that facilitate survival under new environmental conditions (e.g., antibiotic resistance) is highlighted, especially with regard to clinically, industrially and agriculturally important microbes. Molecular processes whose discovery led to the formation of important research and/or biotechnological tools will also be discussed. Students will participate in laboratory projects which highlight important mechanisms, such as transformation, transduction, lysogeny, conjugation and CRIPSR-Cas acquired adaptive immunity. (Prerequisites: (BIOL-206 and BIOL-216) or BIOL-201 or BIOL-202 or BIOG-240 or equivalent courses.) Lab 3, Lecture 3 (Fall).

* At least one course must be at the 300-level or above.