Human-Computer Interaction MS

Human-Computer Interaction (capstone project option), MS degree, typical course sequence

Course Sem. Cr. Hrs.
First Year
HCIN-600
Research Methods
This course provides students with an introduction to the practical application of various research methods that can be used in human computer interaction. The course provides an overview of the research process and the literature review, and provides experience with qualitative, survey, and experimental research methods. Students will study existing research and design and conduct studies. Students will need to have taken a statistics course before registering for this class.
3
HCIN-610
Foundations of Human-Computer Interaction
Human-computer interaction (HCI) is a field of study concerned with the design, evaluation and implementation of interactive computing systems for human use and with the study of major phenomena surrounding them. This course surveys the scope of issues and foundations of the HCI field: cognitive psychology, human factors, interaction styles, user analysis, task analysis, interaction design methods and techniques, and evaluation. This course will focus on the users and their tasks.
3
HCIN-620
Information and Interaction Design
Designing meaningful relationships among people and the products they use is both an art and a science. This course will focus on the unique design practice of: representing and organizing information in such a way as to facilitate perception and understanding (information architecture); and, specifying the appropriate mechanisms for accessing and manipulating task information (interaction design). This course will also explore the various design patterns (design solutions to particular problems) that are appropriate for the HCI professional. Students will need prior knowledge of an interface prototyping tool.
3
HCIN-630
Usability Testing
This project-based course will focus on the formal evaluation of products. Topics include usability test goal setting, recruitment of appropriate users, design of test tasks, design of the test environment, test plan development and implementation, analysis and interpretation of the results, and documentation and presentation of results and recommendations.
3
HCIN-794
MS Human Computer Interaction Capstone Proposal
In this course, students will design a proposal for a capstone project to apply the theories and methodologies to a problem in the HCI domain. Students working through the guidance of the instructor, will investigate a problem space, perform a literature review, develop the problem statement, write a proposal for how they intend to design and implement a solution, and communicate the proposal to potential capstone committee members.
3
 
Application Domain Courses
6
 
Program Elective
3
Second Year
HCIN-795
MS HCI Project
In this course, students will apply the theories and methodologies to the investigation of a problem in the HCI domain. Students who have already prepared a proposal for their capstone project,will design and implement a solution to a problem, and communicate the results.
3
   
Program Elective
3
Total Semester Credit Hours
30

Human-Computer Interaction (thesis option), MS degree, typical course sequence

Course Sem. Cr. Hrs.
First Year
HCIN-600
Research Methods
This course provides students with an introduction to the practical application of various research methods that can be used in human computer interaction. The course provides an overview of the research process and the literature review, and provides experience with qualitative, survey, and experimental research methods. Students will study existing research and design and conduct studies. Students will need to have taken a statistics course before registering for this class.
3
HCIN-610
Foundations of Human-Computer Interaction
Human-computer interaction (HCI) is a field of study concerned with the design, evaluation and implementation of interactive computing systems for human use and with the study of major phenomena surrounding them. This course surveys the scope of issues and foundations of the HCI field: cognitive psychology, human factors, interaction styles, user analysis, task analysis, interaction design methods and techniques, and evaluation. This course will focus on the users and their tasks.
3
HCIN-620
Information and Interaction Design
Designing meaningful relationships among people and the products they use is both an art and a science. This course will focus on the unique design practice of: representing and organizing information in such a way as to facilitate perception and understanding (information architecture); and, specifying the appropriate mechanisms for accessing and manipulating task information (interaction design). This course will also explore the various design patterns (design solutions to particular problems) that are appropriate for the HCI professional. Students will need prior knowledge of an interface prototyping tool.
3
HCIN-630
Usability Testing
This project-based course will focus on the formal evaluation of products. Topics include usability test goal setting, recruitment of appropriate users, design of test tasks, design of the test environment, test plan development and implementation, analysis and interpretation of the results, and documentation and presentation of results and recommendations.
3
 
Application Domain Courses
6
 
Program Electives
6
Second Year
HCIN-796
MS HCI Thesis
Students electing a research capstone experience will work closely with an adviser on a current research project or one self-developed and guided by the adviser. Permission of the capstone committee and the graduate program director is required.
6
Total Semester Credit Hours
30

Application domain courses

eLearning technologies
Course
HCIN-660
Fundamentals of Instructional Technology
Instructional Technology encompasses the basic processes for developing and delivering instruction. Instructional Systems Design (ISD) is a well-established methodology for describing knowledge and skills and developing instructional systems to effectively conveying knowledge. This course enables the student to be able to plan, organize, and systematically develop instructional materials. The course uses an ISD model to analyze, design, deliver, and evaluate instruction.
HCIN-661
Interactive Courseware
Computer software that teaches is referred to as courseware. This course is a continuation of HCIN-660 that transitions from general instructional design into the actual application of these principles in a computer-based environment. Although the basic principles of instructional design hold true in all media environments, using these teaching and learning principles is somewhat different when developing instruction that will be delivered by computer. This course teaches procedures that have already been successful in the design and development of courseware. Successful students should have one year of object-oriented programming.
Geographic information science and technology
Course
ISTE-740
Geographic Information Science and Technology
This course provides a survey of the theory, concepts, and technologies related to representation and understanding of the earth - a scientific domain known as Geographic Information Science and Technology (GIS & T). Students will gain hands-on experience with technologies such as Global Positioning Systems (GPSs), Geographic Information Systems (GISs), remote sensing, Virtual Globes (Google Earth), and web mapping mashups. Furthermore, students will learn relevant GIS & T theory, concepts, and research trends such as spatial reasoning, spatiotemporal data representation, and spatial analysis.
ISTE-744
Thematic Cartography and Geographic Visualization
This course examines concepts and techniques associated with dynamic map construction, usage, and assessment. Specific topics include thematic cartography, geographic information visualization, sources of dynamic geographic information, developing animated and interactive maps, mapping mashup development, using maps as a means to support group work, usability of dynamic maps, and current geovisualization research areas. Development of a visualization prototype and an associated scholarly paper in an area related to thematic cartography and geographic visualization are required.
Smart device application design and development
Course
HCIN-720
Prototyping Wearable and Internet of Things Devices
Wearable computers and Internet of Things devices involve both hardware and software. In order to design user experiences for these systems, professionals must understand how they are built. Students will learn how to rapidly prototype and evaluate wearable and IoT devices combining hardware and software. Experience in programming is helpful but not a prerequisite.
HCIN-722
Human-Computer Interaction with Mobile, Wearable, and Ubiquitous Devices
Mobile phones are now a major computing platform, and wearable and Internet of Things devices are emerging as major technologies. Each device offers different interaction opportunities and challenges. Students will learn about the research in interaction with these devices and how to design effective interactions for mobile, wearable, and ubiquitous devices.
Web development
Course
ISTE-645
Foundations of Web Technologies I
This class provides an introduction to internet and web technologies. Topics include an introduction to the internet and basic internet technologies (including, but not limited to: SSH, SFTP, UNIX, XHTML, CSS, Client-Side programming, and website publishing).
ISTE-646
Foundations of Web Technologies II
This course builds on the basic aspects of web page development that are presented in the first course and extends that knowledge to focus on issues and technologies related to the design and development of web sites. Topics include advanced internet technologies (including, but not limited to: AJAX, server-side programming, database use and access, client libraries, server frameworks, and creating and consuming information services).

Program electives

Course
HCIN-660
Fundamentals of Instructional Technology
Instructional Technology encompasses the basic processes for developing and delivering instruction. Instructional Systems Design (ISD) is a well-established methodology for describing knowledge and skills and developing instructional systems to effectively conveying knowledge. This course enables the student to be able to plan, organize, and systematically develop instructional materials. The course uses an ISD model to analyze, design, deliver, and evaluate instruction.
HCIN-661
Interactive Courseware
Computer software that teaches is referred to as courseware. This course is a continuation of HCIN-660 that transitions from general instructional design into the actual application of these principles in a computer-based environment. Although the basic principles of instructional design hold true in all media environments, using these teaching and learning principles is somewhat different when developing instruction that will be delivered by computer. This course teaches procedures that have already been successful in the design and development of courseware. Successful students should have one year of object-oriented programming.
HCIN-700
Current Topics in HCI
Human-Computer Interaction (HCI) is an evolving field. This course is designed to study the current themes and advanced issues of HCI. Topics will vary depending upon current research and developments in the field.
HCIN-705
Topics in HCI for Biomedical Informatics
This course will provide a theoretical and case-based study of several areas of HCI, all considered within the application domain of biomedical informatics. Course topics include a scientific approach to UI design (usability engineering), domain-specific user analysis and user profiles, social and cultural influences, general and domain-specific design issues, information visualization, data integration, mobile devices, security, privacy, and ethics.
HCIN-715
Agent-Based and Cognitive Modeling
This course is intended as an introduction to the emerging areas of agent-based modeling and cognitive modeling. Both modeling approaches are at the intersection of research (theory development and confirmation) and computational simulation. This course will be an introduction to these topics, focusing on the research aspects of agent-based modeling and the development and testing of cognitive models. The role of visualization in modeling development and analysis is presented. Students will analyze the social science literature for current models and theories and will develop computational models incorporating these theories.
HCIN-720
Prototyping Wearable and Internet of Things Devices
Wearable computers and Internet of Things devices involve both hardware and software. In order to design user experiences for these systems, professionals must understand how they are built. Students will learn how to rapidly prototype and evaluate wearable and IoT devices combining hardware and software. Experience in programming is helpful but not a prerequisite.
HCIN-722
Human-Computer Interaction with Mobile, Wearable, and Ubiquitous Devices
Mobile phones are now a major computing platform, and wearable and Internet of Things devices are emerging as major technologies. Each device offers different interaction opportunities and challenges. Students will learn about the research in interaction with these devices and how to design effective interactions for mobile, wearable, and ubiquitous devices.
HCIN-730
User-Centered Design Methods
This course will focus on the major user centered design methodologies used in the development of applications and environments. Topics include: evolution of software design methods, emergence of user-centered design, and key concepts, attributes and process of the major design methodologies. Software design projects will be required.
HCIN-735
Collaboration, Technology, and the Human Experience
Students will examine the role of technology and group collaboration in organizations. An overview of relevant theory, current and emergent technologies, and trends in collaborative science will provide the context for strategic implementation and development of collaborative environments. Group projects using collaborative technologies will be required.
HCIN-794
MS Human Computer Interaction Capstone Proposal
In this course, students will design a proposal for a capstone project to apply the theories and methodologies to a problem in the HCI domain. Students working through the guidance of the instructor, will investigate a problem space, perform a literature review, develop the problem statement, write a proposal for how they intend to design and implement a solution, and communicate the proposal to potential capstone committee members.
ISTE-645
Foundations of Web Technologies I
This class provides an introduction to internet and web technologies. Topics include an introduction to the internet and basic internet technologies (including, but not limited to: SSH, SFTP, UNIX, XHTML, CSS, Client-Side programming, and website publishing).
ISTE-646
Foundations Of Web Technologies II
This course builds on the basic aspects of web page development that are presented in the first course and extends that knowledge to focus on issues and technologies related to the design and development of web sites. Topics include advanced internet technologies (including, but not limited to: AJAX, server-side programming, database use and access, client libraries, server frameworks, and creating and consuming information services).
ISTE-740
Geographic Information Science And Technology
This course provides a survey of the theory, concepts, and technologies related to representation and understanding of the earth - a scientific domain known as Geographic Information Science and Technology (GIS & T). Students will gain hands-on experience with technologies such as Global Positioning Systems (GPSs), Geographic Information Systems (GISs), remote sensing, Virtual Globes (Google Earth), and web mapping mashups. Furthermore, students will learn relevant GIS & T theory, concepts, and research trends such as spatial reasoning, spatiotemporal data representation, and spatial analysis.
ISTE-744
Thematic Cartography And Geographic Visualization
This course examines concepts and techniques associated with dynamic map construction, usage, and assessment. Specific topics include thematic cartography, geographic information visualization, sources of dynamic geographic information, developing animated and interactive maps, mapping mashup development, using maps as a means to support group work, usability of dynamic maps, and current geovisualization research areas. Development of a visualization prototype and an associated scholarly paper in an area related to thematic cartography and geographic visualization are required.
ISTE-772
Knowledge Discovery for Biomedical Informatics
This course will provide an in-depth exposure to advanced topics in biomedical informatics and knowledge discovery. Large datasets will be used to illustrate and explore methods in the transformation of data to information and integration of information with domain knowledge. Topics will include high-throughput technologies in genomics, descriptive and inferential statistics, machine learning, visualization, human-computer interaction. Note: One year of programming in an object-oriented language is needed.
PSYC-712
Graduate Cognition
This course will survey theoretical and empirical approaches to understanding the nature of the mental processes involved in attention, object recognition, learning and memory, reasoning, problem solving, decision-making, and language. The course presents a balance between historically significant findings and current state of-the-art research. Readings that have structured the nature and direction of scientific debate in these fields will be discussed. The course also includes discussions of methodology and practical applications. Students will have opportunities to develop their research skills and critical thinking by designing research studies in cognitive psychology.
PSYC-715
Graduate Perception
The course is designed to provide students with a deeper understanding of topics in perception. This course will be organized such that students will work in groups on various projects as well as covering topics through readings and classroom discussion. The topics may include, but are not limited to: spatial frequency perception; aftereffects, visual illusions and their relationship to cortical function and pattern perception; color perception; depth and motion perception; higher order perception such as face and object recognition; and music and speech perception. The goal is to cover current research and theories in perception, looking at current developments and their antecedents. The course will be divided into various modules. Students will be assigned readings relevant to each section of the course, and will be expected to master the major concepts. Group discussion of the readings will complement lectures where the instructor will present relevant background material. There will also be laboratory time for the students, where they will examine empirical findings in perception, and develop their research skills in the field.