Integrated Electronics Certificate

Integrated Electronics, certificate, typical course sequence

Course Sem. Cr. Hrs.
Introduction to Circuit Theory
Digital Electronics
This is an introductory course in digital MOS circuit analysis and design. The course covers the following topics: (1) MOSFET I-V behavior in aggressively scaled devices; (2) Static and dynamic characteristics of NMOS and CMOS inverters; (3) Combinational and sequential logic networks using CMOS technology; (4) Dynamic CMOS logic networks, including precharge-evaluate, domino and transmission gate circuits; (5) Special topics, including static and dynamic MOS memory, and interconnect RLC behavior. (Prerequisites: EEEE-281 or equivalent course.) Lab 3, Lecture 3 (Fall, Spring, Summer).
Analog Electronics
This is an introductory course in analog electronic circuit analysis and design. The course covers the following topics: (1) Diode circuit DC and small-signal behavior, including rectifying as well as Zener-diode-based voltage regulation; (2) MOSFET current-voltage characteristics; (3) DC biasing of MOSFET circuits, including integrated-circuit current sources; (4) Small-signal analysis of single-transistor MOSFET amplifiers and differential amplifiers; (5) Multi-stage MOSFET amplifiers, such as cascade amplifiers, and operational amplifiers; (6) Frequency response of MOSFET-based single- and multi-stage amplifiers; (7) DC and small-signal analysis and design of bipolar junction transistor (BJT) devices and circuits; (8) Feedback and stability in MOSFET and BJT amplifiers. (Prerequisites: EEEE-281 and EEEE-282 and EEEE-499 or equivalent courses.) Lab 3, Lecture 4 (Fall, Spring).
Mixed-Signal IC Design
This is the first course in the graduate course sequence in analog integrated circuit design EEEE-726 and EEEE-730. This course covers the following topics: (1)Fundamentals of data conversion (2) Nyquist rate digital-to-analog converters (3) Quantization noise and analysis (4) Nyquist rate analog-to-digital converters (5) Sample and hold circuits (6) Voltage references (7) Static and dynamic testing of digital-to-analog converters (8) Cell based design strategies for integrated circuits (9)Advanced topics in data conversion. (Prerequisites: EEEE-510 or EEEE-610 or equivalent course.) Lecture 3 (Spring).
Total Semester Credit Hours