Chemical Engineering Master of Science Degree
Chemical Engineering
Master of Science Degree
- RIT /
- Rochester Institute of Technology /
- Academics /
- Chemical Engineering MS
The chemical engineering master’s degree prepares you to develop new, high-tech materials for use across a range of critical industries, including semiconductors, pharmaceuticals, renewable energy systems, battery and alternative energies, and more.
Overview for Chemical Engineering MS
Why Study RIT’s Chemical Engineering Master’s Degree
STEM-OPT Visa Eligible: The STEM Optional Practical Training (OPT) program allows full-time, on-campus international students on an F-1 student visa to stay and work in the U.S. for up to three years after graduation.
Advanced Course Work with Capstone Project: Chemical engineering students receive training in latest theory, principles, and processes to design engineered systems culminating in an independent project.
Hands-On Experience: Students may pursue research for credit with a faculty member, graduate internships, and cooperative education through paid full-time work in industry.
Strong Career Paths: Students are hired at industry-leading companies, such as Bausch & Lomb, Boston Beer Company, Regeneron, DuPont, Eastman Kodak Company, Global Tungsten and Powders, Northrop Grumman, Global Foundries, The Hershey Company, and more.
Chemical engineers apply the core scientific disciplines (chemistry, physics, biology, and mathematics) to transform raw materials or chemicals into more useful or valuable forms, invariably in processes that involve chemical change. In research and development, chemical engineers not only create new, more effective ways to manufacture chemicals, but also work collaboratively with chemists to pioneer the development of new high-tech materials for specialized applications. The development, commercialization, and optimization of the industrial-scale processes for manufacturing chemicals and advanced materials are feats of chemical engineering. Virtually every aspect of a modern industrial economy is critically dependent upon chemical engineering for manufacturing the vast array of bulk and specialty chemicals and high-tech materials needed to create a limitless array of value-added products.
Those with advanced knowledge in chemical engineering become leaders in industry, government, and higher education.
RIT’s Chemical Engineering Master’s Degree
In RIT’s chemical engineering MS you will take core chemical engineering courses in topics like advanced engineering mathematics, advanced thermodynamics, transport phenomena, and advanced reaction engineering. With this foundation in place, you are prepared to select focus area elective courses that provide a breadth of expertise across chemical engineering and develop your professional interests. You may personalize your chemical engineering master’s program with elective courses in chemical engineering, mechanical engineering, microelectronic engineering, microsystems engineering, imaging science, materials science and engineering, and mathematics. These areas give you an opportunity to customize your course work in a range of topics, such as:
- Battery engineering
- Renewable energy systems
- Nanotechnology and microsystems
- Quantum mechanics
- Polymer science
- Thermodynamics
- Applied mathematics
Join us virtually and on-campus
Discover how graduate study at RIT can help further your career objectives.
30% Tuition Scholarship for NY Residents and Graduates
Now is the perfect time to earn your Master’s degree. If you’re a New York state resident with a bachelor’s degree or have/will graduate from a college or university in New York state, you are eligible to receive a 30% tuition scholarship.
Featured Work and Profiles
RIT Chemist Awarded Grant to Unravel the Secrets of Molecular 'Handedness'"
Poornima Padmanabhan
RIT’s Poornima Padmanabhan is set to investigate how the twist in molecules—like how your left hand differs from your right—plays a crucial role in biology and material innovation.
Curriculum for 2024-2025 for Chemical Engineering MS
Current Students: See Curriculum Requirements
Chemical Engineering, MS degree, typical source sequence
Course | Sem. Cr. Hrs. | |
---|---|---|
First Year | ||
CHME-610 | Advanced Thermodynamics The course extends the concepts of energy, entropy, phase equilibrium and multi-component mixtures from ideal to real fluids via the introduction of state functions, fluid models and generalized conditions for equilibrium of solutions and phases. Models for real-fluid behavior are implemented in the context of actual chemical processes. Additionally, real-fluid behavior is linked to molecular properties in order to introduce predictive approaches to fluid behavior. Lecture 3 (Fall, Spring). |
3 |
CHME-620 | Advanced Transport Phenomena Fundamentals of fluid flow are examined on a differential scale. Local differential equations governing fluid flow are derived from their corresponding integral forms using classical integral theorems. The form of these equations in various coordinate systems is examined. Exact solutions of differential equations are considered under both steady state and transient conditions, as are typical approximations to those equations such as creeping, potential, lubrication, and boundary layer flows. The theoretical basis of these approximations are unified via asymptotic theory. Forces on surfaces are determined by coupling differential velocity and pressure fields with appropriate integral representations. Lecture 3 (Fall, Spring). |
3 |
CHME-640 | Advanced Reaction Engineering The application of ideal reactor concepts and analyses is extended to the design, modeling and performance evaluation of reactors used in manufacturing processes. Catalytic reactions are discussed in terms of mechanisms and kinetics, and used to design, model and evaluate the performance of fixed bed, suspended bed and other types of catalytic reactors. Concepts of mass transport limitations and non-ideal flows are introduced to provide the framework for the analysis of deviations from ideal behavior experienced by real reactors. Lecture 3 (Fall, Spring). |
3 |
CHME-709 | Advanced Engineering Mathematics The course begins with a pertinent review of linear and nonlinear ordinary differential equations and Laplace transforms and their applications to solving engineering problems. It then continues with an in-depth study of vector calculus, complex analysis/integration, and partial differential equations; and their applications in analyzing and solving a variety of engineering problems. Topics include: ordinary and partial differential equations, Laplace transforms, vector calculus, complex functions/analysis, complex integration. Chemical engineering applications will be discussed throughout the course. (Prerequisites: Graduate standing in Chemical Engineering.) Lecture 3 (Fall). |
3 |
CHME-792 | Project with Paper This course is used by students as a qualifying capstone experience to their M.S. degree. The student must demonstrate an acquired competence in a topic that is chosen in conference with a faculty advisor. The work may involve a research and/or design project with demonstration of acquired knowledge. The project scope should be designed with the intent of being completed in a single academic semester. In all instances, a final report determined by the faculty advisor/ supervisor of the work are required to satisfy the capstone experience. (Prerequisites: Graduate standing in Chemical Engineering.) Ind Study 3 (Fall, Spring, Summer). |
3 |
Focus Area Electives* |
15 | |
Total Semester Credit Hours | 30 |
* Focus Area Electives: Courses that are directly relevant to providing a breadth of expertise across chemical engineering, by drawing upon graduate course work as appropriate from across the college of engineering or related fields with approval by the Graduate Program Director. It is anticipated that students interested in engaging with faculty advisors for graduate research would enroll in graduate independent studies to achieve that experience. Graduate courses from a discipline outside of KGCOE would require approval from the Department Graduate Program Director.
Students are also interested in
Admissions and Financial Aid
This program is available on-campus only.
Offered | Admit Term(s) | Application Deadline | STEM Designated |
---|---|---|---|
Full‑time | Fall or Spring | February 15 priority deadline; rolling thereafter | Yes |
Part‑time | Fall or Spring | February 15 priority deadline; rolling thereafter | No |
Full-time study is 9+ semester credit hours. Part-time study is 1‑8 semester credit hours. International students requiring a visa to study at the RIT Rochester campus must study full‑time.
Application Details
To be considered for admission to the Chemical Engineering MS program, candidates must fulfill the following requirements:
- Complete an online graduate application.
- Submit copies of official transcript(s) (in English) of all previously completed undergraduate and graduate course work, including any transfer credit earned.
- Hold a baccalaureate degree (or US equivalent) from an accredited university or college in chemical engineering, or a related field with successful completion of courses in engineering thermodynamics, multi-variable calculus, differential equations, fluid mechanics, and reaction engineering. A minimum cumulative GPA of 3.0 (or equivalent) is recommended.
- Submit a current resume or curriculum vitae.
- Submit a personal statement of educational objectives.
- Submit two letters of recommendation.
- Entrance exam requirements: GRE optional but recommended. No minimum score requirement.
- Submit English language test scores (TOEFL, IELTS, PTE Academic), if required. Details are below.
English Language Test Scores
International applicants whose native language is not English must submit one of the following official English language test scores. Some international applicants may be considered for an English test requirement waiver.
TOEFL | IELTS | PTE Academic |
---|---|---|
88 | 6.5 | 60 |
International students below the minimum requirement may be considered for conditional admission. Each program requires balanced sub-scores when determining an applicant’s need for additional English language courses.
How to Apply Start or Manage Your Application
Cost and Financial Aid
An RIT graduate degree is an investment with lifelong returns. Graduate tuition varies by degree, the number of credits taken per semester, and delivery method. View the general cost of attendance or estimate the cost of your graduate degree.
A combination of sources can help fund your graduate degree. Learn how to fund your degree
Research
The faculty and students in the Kate Gleason College of Engineering are engaging in numerous areas of research, which takes place across all of our engineering disciplines and often involves other colleges at RIT, local health care institutions, and major industry partners. Explore the college's key research initiatives to learn more about our research in:
Related News
-
August 27, 2024
RIT offers new master’s degrees in chemical engineering, biomedical engineering, and project management
The new engineering master’s degrees will serve to meet demands in increasing renewable energies, personalized healthcare technologies, and diagnostic system improvements. The project management MS allows students the ability to better specialize to their specific interests, giving them a competitive edge in their field of interest and making them more valuable to an employer.
-
October 2, 2023
Kate Gleason College of Engineering appoints two new department heads
Brian Landi and Katie McConky have been named department heads of the chemical engineering and industrial and systems engineering programs in the college. Both bring extensive teaching, research, and company experience to the academic leadership positions in the engineering college.
Contact
Department of Chemical Engineering