Applied Mathematics BS  Curriculum
Applied Mathematics BS
Applied Mathematics, BS degree, typical course sequence
Course  Sem. Cr. Hrs.  

First Year  
CSCI101  General Education – Elective: Principles of Computing This course is designed to introduce students to the central ideas of computing. Students will engage in activities that show how computing changes the world and impacts daily lives. Students will develop stepbystep written solutions to basic problems and implement their solutions using a programming language. Assignments will be completed both individually and in small teams. Students will be required to demonstrate oral and written communication skills through such assignments as short papers, homeworks, group discussions and debates, and development of a term paper. Lecture 3 (Fall). 
3 
CSCI141  General Education – Elective: Computer Science I This course serves as an introduction to computational thinking using a problemcentered approach. Specific topics covered include: expression of algorithms in pseudo code and a programming language; functional and imperative programming techniques; control structures; problem solving using recursion; basic searching and sorting; elementary data structures such as lists, trees, and graphs; and correctness, testing and debugging. Assignments (both in class and for homework) requiring a pseudo code solution and an implementation are an integral part of the course. An endofterm project is also required. Lec/Lab 6 (Fall, Spring). 
4 
MATH181  General Education – Mathematical Perspective A: ProjectBased Calculus I This is the first in a twocourse sequence intended for students majoring in mathematics, science, or engineering. It emphasizes the understanding of concepts, and using them to solve physical problems. The course covers functions, limits, continuity, the derivative, rules of differentiation, applications of the derivative, Riemann sums, definite integrals, and indefinite integrals. (Prerequisite: A or better in MATH111 or A or better in ((NMTH260 or NMTH272 or NMTH275) and NMTH220) or a math placement exam score greater than or equal to 70 or department permission to enroll in this class.) Lecture 6 (Fall, Spring, Summer). 
4 
MATH182  General Education – Mathematical Perspective B: ProjectBased Calculus II This is the second in a twocourse sequence intended for students majoring in mathematics, science, or engineering. It emphasizes the understanding of concepts, and using them to solve physical problems. The course covers techniques of integration including integration by parts, partial fractions, improper integrals, applications of integration, representing functions by infinite series, convergence and divergence of series, parametric curves, and polar coordinates. (Prerequisites: C or better in (MATH181 or MATH173 or 1016282) or (MATH171 and MATH180) or equivalent course(s).) Lecture 6 (Fall, Spring, Summer). 
4 
MATH199  Mathematics and Statistics Seminar This course introduces the programs within the School of Mathematical Sciences, and provides an introduction to math and statistics software. The course provides practice in technical writing. Seminar 1 (Fall). 
1 
YOPS10  RIT 365: RIT Connections RIT 365 students participate in experiential learning opportunities designed to launch them into their career at RIT, support them in making multiple and varied connections across the university, and immerse them in processes of competency development. Students will plan for and reflect on their firstyear experiences, receive feedback, and develop a personal plan for future action in order to develop foundational selfawareness and recognize broadbased professional competencies. Lecture 1 (Fall, Spring). 
0 
General Education – Elective 
3  
General Education – FirstYear Writing (WI) 
3  
General Education – Artistic Perspective 
3  
General Education – Natural Science Inquiry Perspective 5‡ 
4  
Second Year  
MATH200  Discrete Mathematics and Introduction to Proofs This course prepares students for professions that use mathematics in daily practice, and for mathematics courses beyond the introductory level where it is essential to communicate effectively in the language of mathematics. It covers various methods of mathematical proof, starting with basic techniques in propositional and predicate calculus and set theory, and then moving to applications in advanced mathematics. (Prerequisite: MATH173 or MATH182 or MATH182A or equivalent course.) Lecture 3, Recitation 4 (Fall). 
3 
MATH251  Probability and Statistics I This course introduces sample spaces and events, axioms of probability, counting techniques, conditional probability and independence, distributions of discrete and continuous random variables, joint distributions (discrete and continuous), the central limit theorem, descriptive statistics, interval estimation, and applications of probability and statistics to realworld problems. A statistical package such as Minitab or R is used for data analysis and statistical applications. (Prerequisites: MATH173 or MATH182 or MATH 182A or equivalent course.) Lecture 3 (Fall, Spring, Summer). 
3 
MATH252  Probability and Statistics II This course covers basic statistical concepts, sampling theory, hypothesis testing, confidence intervals, point estimation, and simple linear regression. The statistical software package MINITAB will be used for data analysis and statistical applications. (Prerequisites: STAT251 or MATH251 or equivalent course.) Lecture 3 (Fall, Spring). 
3 
MATH231  Differential Equations This course is an introduction to the study of ordinary differential equations and their applications. Topics include solutions to first order equations and linear second order equations, method of undetermined coefficients, variation of parameters, linear independence and the Wronskian, vibrating systems, and Laplace transforms. (Prerequisite: MATH173 or MATH182 or MATH182A or equivalent course.) Lecture 3 (Fall, Spring, Summer). 
3 
MATH399  Mathematical Sciences Job Search Seminar This course helps students prepare to search for coop or fulltime employment. Students will learn strategies for conducting a successful job search and transitioning into the work world. The course meets one hour each week for five weeks. Lecture 1 (Fall, Spring). 
0 
Choose one of the following:  3 

MATH241  Linear Algebra This course is an introduction to the basic concepts of linear algebra, and techniques of matrix manipulation. Topics include linear transformations, Gaussian elimination, matrix arithmetic, determinants, vector spaces, linear independence, basis, null space, row space, and column space of a matrix, eigenvalues, eigenvectors, change of basis, similarity and diagonalization. Various applications are studied throughout the course. (Prerequisites: MATH190 or MATH200 or MATH219 or MATH220 or MATH221 or MATH221H or equivalent course.) Lecture 3 (Fall, Spring). 

MATH241H  Honors Linear Algebra 

Choose one of the following:  4 

MATH221  General Education – Elective: Multivariable and Vector Calculus This course is principally a study of the calculus of functions of two or more variables, but also includes a study of vectors, vectorvalued functions and their derivatives. The course covers limits, partial derivatives, multiple integrals, Stokes' Theorem, Green's Theorem, the Divergence Theorem, and applications in physics. Credit cannot be granted for both this course and MATH219. (Prerequisite: C or better MATH173 or MATH182 or MATH182A or equivalent course.) Lecture 4 (Fall, Spring, Summer). 

MATH221H  General Education – Elective: Honors Multivariable and Vector Calculus 

General Education – Ethical Perspective 
3  
General Education – Global Perspective 
3  
General Education – Social Perspective 
3  
General Education – Scientific Principles Perspective‡ 
4  
Third Year  
MATH431  Real Variables I This course is an investigation and extension of the theoretical aspects of elementary calculus. Topics include mathematical induction, real numbers, sequences, functions, limits, and continuity. The workshop will focus on helping students develop skill in writing proofs. (Prerequisites: (MATH190 or MATH200 or 1055265) and (MATH220 or MATH221 or MATH221H or 1016410 or 1016328) or equivalent courses.) Lec/Lab 4 (Fall, Spring). 
3 
Program Electives 
18  
General Education – Immersion 1, 2 
6  
Open Elective 
3  
Fourth Year  
MATH411  Numerical Analysis This course covers numerical techniques for the solution of nonlinear equations, interpolation, differentiation, integration, and the solution of initial value problems. (Prerequisites: (MATH231 and (MATH241 or MATH241H)) or MATH233 or equivalent courses.) Lecture 3 (Fall). 
3 
MATH421  Mathematical Modeling (WIPR) This course explores problem solving, formulation of the mathematical model from physical considerations, solution of the mathematical problem, testing the model and interpretation of results. Problems are selected from the physical sciences, engineering, and economics. (Prerequisites: (MATH220 or MATH221 or 1016410 or 1016328) and MATH231 and (MATH241 or MATH241H) and MATH251 or equivalent courses.) Lecture 3 (Fall). 
3 
MATH441  Abstract Algebra I This course covers basic set theory, number theory, groups, subgroups, cyclic and permutation groups, Lagrange and Sylow theorems, quotient groups, and isomorphism theorems. Group Theory finds applications in other scientific disciplines like physics and chemistry. (Prerequisites: (MATH190 or MATH200 or 1055265) and (MATH241 or MATH241H) or equivalent courses.) Lec/Lab 4 (Fall, Spring). 
3 
General Education – Immersion 3 
3  
General Education – Electives 
6  
Program Electives 
3  
Open Electives 
9  
Total Semester Credit Hours  121 
Please see General Education Curriculum (GE) for more information.
(WI) Refers to a writing intensive course within the major.
Please see Wellness Education Requirement for more information. Students completing bachelor's degrees are required to complete two different Wellness courses.
‡ Students will satisfy this requirement by taking either University Physics I (PHYS211) and University Physics II (PHYS212) or General & Analytical Chemistry I and Lab (CHMG141/145) and General & Analytical Chemistry II and Lab (CHMG142/146) or General Biology I and Lab (BIOL101/103) and General Biology II and Lab (BIOL102/104).
Accelerated DualDegree Programs
Today’s careers require advanced degrees grounded in realworld experience. RIT’s Combined Accelerated Pathways enable you to earn both a bachelor’s and a master’s degree in as little as five years of study. You’ll earn two degrees while gaining the valuable, handson experience that comes from coops, internships, research, study abroad, and more. Learn how a Combined Accelerated Pathway can prepare you for your future, faster.
Applied Mathematics, BS degree/Applied and Computational Mathematics (thesis option), MS degree, typical course sequence
Course  Sem. Cr. Hrs.  

First Year  
CSCI101  General Education – Elective: Principles of Computing This course is designed to introduce students to the central ideas of computing. Students will engage in activities that show how computing changes the world and impacts daily lives. Students will develop stepbystep written solutions to basic problems and implement their solutions using a programming language. Assignments will be completed both individually and in small teams. Students will be required to demonstrate oral and written communication skills through such assignments as short papers, homeworks, group discussions and debates, and development of a term paper. Lecture 3 (Fall). 
3 
CSCI141  General Education – Elective: Computer Science I This course serves as an introduction to computational thinking using a problemcentered approach. Specific topics covered include: expression of algorithms in pseudo code and a programming language; functional and imperative programming techniques; control structures; problem solving using recursion; basic searching and sorting; elementary data structures such as lists, trees, and graphs; and correctness, testing and debugging. Assignments (both in class and for homework) requiring a pseudo code solution and an implementation are an integral part of the course. An endofterm project is also required. Lec/Lab 6 (Fall, Spring). 
4 
MATH181  General Education – Mathematical Perspective A: ProjectBased Calculus I This is the first in a twocourse sequence intended for students majoring in mathematics, science, or engineering. It emphasizes the understanding of concepts, and using them to solve physical problems. The course covers functions, limits, continuity, the derivative, rules of differentiation, applications of the derivative, Riemann sums, definite integrals, and indefinite integrals. (Prerequisite: A or better in MATH111 or A or better in ((NMTH260 or NMTH272 or NMTH275) and NMTH220) or a math placement exam score greater than or equal to 70 or department permission to enroll in this class.) Lecture 6 (Fall, Spring, Summer). 
4 
MATH182  General Education – Mathematical Perspective B: ProjectBased Calculus II This is the second in a twocourse sequence intended for students majoring in mathematics, science, or engineering. It emphasizes the understanding of concepts, and using them to solve physical problems. The course covers techniques of integration including integration by parts, partial fractions, improper integrals, applications of integration, representing functions by infinite series, convergence and divergence of series, parametric curves, and polar coordinates. (Prerequisites: C or better in (MATH181 or MATH173 or 1016282) or (MATH171 and MATH180) or equivalent course(s).) Lecture 6 (Fall, Spring, Summer). 
4 
MATH199  Mathematics and Statistics Seminar This course introduces the programs within the School of Mathematical Sciences, and provides an introduction to math and statistics software. The course provides practice in technical writing. Seminar 1 (Fall). 
1 
YOPS10  RIT 365: RIT Connections RIT 365 students participate in experiential learning opportunities designed to launch them into their career at RIT, support them in making multiple and varied connections across the university, and immerse them in processes of competency development. Students will plan for and reflect on their firstyear experiences, receive feedback, and develop a personal plan for future action in order to develop foundational selfawareness and recognize broadbased professional competencies. Lecture 1 (Fall, Spring). 
0 
General Education – Elective 
3  
General Education – FirstYear Writing (WI) 
3  
General Education – Artistic Perspective 
3  
General Education – Natural Science Inquiry Perspective‡ 
4  
Second Year  
MATH200  Discrete Mathematics and Introduction to Proofs This course prepares students for professions that use mathematics in daily practice, and for mathematics courses beyond the introductory level where it is essential to communicate effectively in the language of mathematics. It covers various methods of mathematical proof, starting with basic techniques in propositional and predicate calculus and set theory, and then moving to applications in advanced mathematics. (Prerequisite: MATH173 or MATH182 or MATH182A or equivalent course.) Lecture 3, Recitation 4 (Fall). 
3 
MATH231  Differential Equations This course is an introduction to the study of ordinary differential equations and their applications. Topics include solutions to first order equations and linear second order equations, method of undetermined coefficients, variation of parameters, linear independence and the Wronskian, vibrating systems, and Laplace transforms. (Prerequisite: MATH173 or MATH182 or MATH182A or equivalent course.) Lecture 3 (Fall, Spring, Summer). 
3 
MATH251  Probability and Statistics I This course introduces sample spaces and events, axioms of probability, counting techniques, conditional probability and independence, distributions of discrete and continuous random variables, joint distributions (discrete and continuous), the central limit theorem, descriptive statistics, interval estimation, and applications of probability and statistics to realworld problems. A statistical package such as Minitab or R is used for data analysis and statistical applications. (Prerequisites: MATH173 or MATH182 or MATH 182A or equivalent course.) Lecture 3 (Fall, Spring, Summer). 
3 
MATH252  Probability and Statistics II This course covers basic statistical concepts, sampling theory, hypothesis testing, confidence intervals, point estimation, and simple linear regression. The statistical software package MINITAB will be used for data analysis and statistical applications. (Prerequisites: STAT251 or MATH251 or equivalent course.) Lecture 3 (Fall, Spring). 
3 
MATH399  Mathematical Sciences Job Search Seminar This course helps students prepare to search for coop or fulltime employment. Students will learn strategies for conducting a successful job search and transitioning into the work world. The course meets one hour each week for five weeks. Lecture 1 (Fall, Spring). 
0 
Choose one of the following:  4 

MATH221  Multivariable and Vector Calculus This course is principally a study of the calculus of functions of two or more variables, but also includes a study of vectors, vectorvalued functions and their derivatives. The course covers limits, partial derivatives, multiple integrals, Stokes' Theorem, Green's Theorem, the Divergence Theorem, and applications in physics. Credit cannot be granted for both this course and MATH219. (Prerequisite: C or better MATH173 or MATH182 or MATH182A or equivalent course.) Lecture 4 (Fall, Spring, Summer). 

MATH221H  Honors Multivariable and Vector Calculus 

Choose one of the following:  3 

MATH241  Linear Algebra This course is an introduction to the basic concepts of linear algebra, and techniques of matrix manipulation. Topics include linear transformations, Gaussian elimination, matrix arithmetic, determinants, vector spaces, linear independence, basis, null space, row space, and column space of a matrix, eigenvalues, eigenvectors, change of basis, similarity and diagonalization. Various applications are studied throughout the course. (Prerequisites: MATH190 or MATH200 or MATH219 or MATH220 or MATH221 or MATH221H or equivalent course.) Lecture 3 (Fall, Spring). 

MATH241H  Honors Linear Algebra 

General Education – Ethical Perspective 
3  
General Education – Global Perspective 
3  
General Education – Social Perspective 
3  
General Education – Scientific Principles Perspective‡ 
4  
Third Year  
MATH431  Real Variables I This course is an investigation and extension of the theoretical aspects of elementary calculus. Topics include mathematical induction, real numbers, sequences, functions, limits, and continuity. The workshop will focus on helping students develop skill in writing proofs. (Prerequisites: (MATH190 or MATH200 or 1055265) and (MATH220 or MATH221 or MATH221H or 1016410 or 1016328) or equivalent courses.) Lec/Lab 4 (Fall, Spring). 
3 
Program Electives 
15  
General Education – Immersion 1, 2 
6  
Open Electives 
6  
General Education – Elective 
3  
Fourth Year  
MATH411  Numerical Analysis This course covers numerical techniques for the solution of nonlinear equations, interpolation, differentiation, integration, and the solution of initial value problems. (Prerequisites: (MATH231 and (MATH241 or MATH241H)) or MATH233 or equivalent courses.) Lecture 3 (Fall). 
3 
MATH421  Mathematical Modeling (WIPR) This course explores problem solving, formulation of the mathematical model from physical considerations, solution of the mathematical problem, testing the model and interpretation of results. Problems are selected from the physical sciences, engineering, and economics. (Prerequisites: (MATH220 or MATH221 or 1016410 or 1016328) and MATH231 and (MATH241 or MATH241H) and MATH251 or equivalent courses.) Lecture 3 (Fall). 
3 
MATH441  Abstract Algebra I This course covers basic set theory, number theory, groups, subgroups, cyclic and permutation groups, Lagrange and Sylow theorems, quotient groups, and isomorphism theorems. Group Theory finds applications in other scientific disciplines like physics and chemistry. (Prerequisites: (MATH190 or MATH200 or 1055265) and (MATH241 or MATH241H) or equivalent courses.) Lec/Lab 4 (Fall, Spring). 
3 
MATH606  Graduate Seminar I The course prepares students to engage in activities necessary for independent mathematical research and introduces students to a broad range of active interdisciplinary programs related to applied mathematics. (This course is restricted to students in the ACMTHMS or MATHMLPHD programs.) Lecture 2 (Fall). 
1 
MATH607  Graduate Seminar II This course is a continuation of Graduate Seminar I. It prepares students to engage in activities necessary for independent mathematical research and introduces them to a broad range of active interdisciplinary programs related to applied mathematics. (Prerequisite: MATH606 or equivalent course or students in the ACMTHMS or MATHMLPHD programs.) Lecture 2 (Spring). 
1 
Math Graduate Core Electives 
9  
General Education – Immersion 3 
3  
General Education – Elective 
3  
Open Electives 
6  
Fifth Year  
MATH790  Research and Thesis Masterslevel research by the candidate on an appropriate topic as arranged between the candidate and the research advisor. (This course is restricted to students in the ACMTHMS or MATHMLPHD programs.) Thesis (Fall, Spring, Summer). 
7 
MATH Graduate Electives 
12  
Total Semester Credit Hours  145 
Please see General Education Curriculum (GE) for more information.
(WI) Refers to a writing intensive course within the major.
Please see Wellness Education Requirement for more information. Students completing bachelor's degrees are required to complete two different Wellness courses.
‡ Students will satisfy this requirement by taking either University Physics I (PHYS211) and University Physics II (PHYS212) or General & Analytical Chemistry I and Lab (CHMG141/145) and General & Analytical Chemistry II and Lab (CHMG142/146) or General Biology I and Lab (BIOL101/103) and General Biology II and Lab (BIOL102/104).
Applied Mathematics, BS degree/Applied and Computational Mathematics (project option), MS degree, typical course sequence
Course  Sem. Cr. Hrs.  

First Year  
CSCI101  General Education – Elective: Principles of Computing This course is designed to introduce students to the central ideas of computing. Students will engage in activities that show how computing changes the world and impacts daily lives. Students will develop stepbystep written solutions to basic problems and implement their solutions using a programming language. Assignments will be completed both individually and in small teams. Students will be required to demonstrate oral and written communication skills through such assignments as short papers, homeworks, group discussions and debates, and development of a term paper. Lecture 3 (Fall). 
3 
CSCI141  General Education – Elective: Computer Science I This course serves as an introduction to computational thinking using a problemcentered approach. Specific topics covered include: expression of algorithms in pseudo code and a programming language; functional and imperative programming techniques; control structures; problem solving using recursion; basic searching and sorting; elementary data structures such as lists, trees, and graphs; and correctness, testing and debugging. Assignments (both in class and for homework) requiring a pseudo code solution and an implementation are an integral part of the course. An endofterm project is also required. Lec/Lab 6 (Fall, Spring). 
4 
MATH181  General Education – Mathematical Perspective A: ProjectBased Calculus I This is the first in a twocourse sequence intended for students majoring in mathematics, science, or engineering. It emphasizes the understanding of concepts, and using them to solve physical problems. The course covers functions, limits, continuity, the derivative, rules of differentiation, applications of the derivative, Riemann sums, definite integrals, and indefinite integrals. (Prerequisite: A or better in MATH111 or A or better in ((NMTH260 or NMTH272 or NMTH275) and NMTH220) or a math placement exam score greater than or equal to 70 or department permission to enroll in this class.) Lecture 6 (Fall, Spring, Summer). 
4 
MATH182  General Education – Mathematical Perspective B: ProjectBased Calculus II This is the second in a twocourse sequence intended for students majoring in mathematics, science, or engineering. It emphasizes the understanding of concepts, and using them to solve physical problems. The course covers techniques of integration including integration by parts, partial fractions, improper integrals, applications of integration, representing functions by infinite series, convergence and divergence of series, parametric curves, and polar coordinates. (Prerequisites: C or better in (MATH181 or MATH173 or 1016282) or (MATH171 and MATH180) or equivalent course(s).) Lecture 6 (Fall, Spring, Summer). 
4 
MATH199  Mathematics and Statistics Seminar This course introduces the programs within the School of Mathematical Sciences, and provides an introduction to math and statistics software. The course provides practice in technical writing. Seminar 1 (Fall). 
1 
YOPS10  RIT 365: RIT Connections RIT 365 students participate in experiential learning opportunities designed to launch them into their career at RIT, support them in making multiple and varied connections across the university, and immerse them in processes of competency development. Students will plan for and reflect on their firstyear experiences, receive feedback, and develop a personal plan for future action in order to develop foundational selfawareness and recognize broadbased professional competencies. Lecture 1 (Fall, Spring). 
0 
General Education – Elective 
3  
General Education – FirstYear Writing (WI) 
3  
General Education – Artistic Perspective 
3  
General Education – Natural Science Inquiry and Scientific Principles Perspective‡ 
4  
Second Year  
MATH200  Discrete Mathematics and Introduction to Proofs This course prepares students for professions that use mathematics in daily practice, and for mathematics courses beyond the introductory level where it is essential to communicate effectively in the language of mathematics. It covers various methods of mathematical proof, starting with basic techniques in propositional and predicate calculus and set theory, and then moving to applications in advanced mathematics. (Prerequisite: MATH173 or MATH182 or MATH182A or equivalent course.) Lecture 3, Recitation 4 (Fall). 
3 
MATH221  General Education – Elective: Multivariable and Vector Calculus This course is principally a study of the calculus of functions of two or more variables, but also includes a study of vectors, vectorvalued functions and their derivatives. The course covers limits, partial derivatives, multiple integrals, Stokes' Theorem, Green's Theorem, the Divergence Theorem, and applications in physics. Credit cannot be granted for both this course and MATH219. (Prerequisite: C or better MATH173 or MATH182 or MATH182A or equivalent course.) Lecture 4 (Fall, Spring, Summer). 
4 
MATH231  Differential Equations This course is an introduction to the study of ordinary differential equations and their applications. Topics include solutions to first order equations and linear second order equations, method of undetermined coefficients, variation of parameters, linear independence and the Wronskian, vibrating systems, and Laplace transforms. (Prerequisite: MATH173 or MATH182 or MATH182A or equivalent course.) Lecture 3 (Fall, Spring, Summer). 
3 
MATH241  Linear Algebra This course is an introduction to the basic concepts of linear algebra, and techniques of matrix manipulation. Topics include linear transformations, Gaussian elimination, matrix arithmetic, determinants, vector spaces, linear independence, basis, null space, row space, and column space of a matrix, eigenvalues, eigenvectors, change of basis, similarity and diagonalization. Various applications are studied throughout the course. (Prerequisites: MATH190 or MATH200 or MATH219 or MATH220 or MATH221 or MATH221H or equivalent course.) Lecture 3 (Fall, Spring). 
3 
MATH251  Probability and Statistics I This course introduces sample spaces and events, axioms of probability, counting techniques, conditional probability and independence, distributions of discrete and continuous random variables, joint distributions (discrete and continuous), the central limit theorem, descriptive statistics, interval estimation, and applications of probability and statistics to realworld problems. A statistical package such as Minitab or R is used for data analysis and statistical applications. (Prerequisites: MATH173 or MATH182 or MATH 182A or equivalent course.) Lecture 3 (Fall, Spring, Summer). 
3 
MATH252  Probability and Statistics II This course covers basic statistical concepts, sampling theory, hypothesis testing, confidence intervals, point estimation, and simple linear regression. The statistical software package MINITAB will be used for data analysis and statistical applications. (Prerequisites: STAT251 or MATH251 or equivalent course.) Lecture 3 (Fall, Spring). 
3 
MATH399  Mathematical Sciences Job Search Seminar This course helps students prepare to search for coop or fulltime employment. Students will learn strategies for conducting a successful job search and transitioning into the work world. The course meets one hour each week for five weeks. Lecture 1 (Fall, Spring). 
0 
General Education – Ethical Perspective 
3  
General Education – Global Perspective 
3  
General Education – Social Perspective 
3  
General Education – Natural Science Inquiry and Scientific Principles Perspective‡ 
4  
Third Year  
MATH431  Real Variables I This course is an investigation and extension of the theoretical aspects of elementary calculus. Topics include mathematical induction, real numbers, sequences, functions, limits, and continuity. The workshop will focus on helping students develop skill in writing proofs. (Prerequisites: (MATH190 or MATH200 or 1055265) and (MATH220 or MATH221 or MATH221H or 1016410 or 1016328) or equivalent courses.) Lec/Lab 4 (Fall, Spring). 
3 
Program Electives 
15  
General Education – Immersion 1, 2 
6  
Open Electives 
6  
General Education – Elective 
3  
Fourth Year  
MATH411  Numerical Analysis This course covers numerical techniques for the solution of nonlinear equations, interpolation, differentiation, integration, and the solution of initial value problems. (Prerequisites: (MATH231 and (MATH241 or MATH241H)) or MATH233 or equivalent courses.) Lecture 3 (Fall). 
3 
MATH421  Mathematical Modeling (WIPR) This course explores problem solving, formulation of the mathematical model from physical considerations, solution of the mathematical problem, testing the model and interpretation of results. Problems are selected from the physical sciences, engineering, and economics. (Prerequisites: (MATH220 or MATH221 or 1016410 or 1016328) and MATH231 and (MATH241 or MATH241H) and MATH251 or equivalent courses.) Lecture 3 (Fall). 
3 
MATH441  Abstract Algebra I This course covers basic set theory, number theory, groups, subgroups, cyclic and permutation groups, Lagrange and Sylow theorems, quotient groups, and isomorphism theorems. Group Theory finds applications in other scientific disciplines like physics and chemistry. (Prerequisites: (MATH190 or MATH200 or 1055265) and (MATH241 or MATH241H) or equivalent courses.) Lec/Lab 4 (Fall, Spring). 
3 
MATH606  Graduate Seminar I The course prepares students to engage in activities necessary for independent mathematical research and introduces students to a broad range of active interdisciplinary programs related to applied mathematics. (This course is restricted to students in the ACMTHMS or MATHMLPHD programs.) Lecture 2 (Fall). 
1 
MATH607  Graduate Seminar II This course is a continuation of Graduate Seminar I. It prepares students to engage in activities necessary for independent mathematical research and introduces them to a broad range of active interdisciplinary programs related to applied mathematics. (Prerequisite: MATH606 or equivalent course or students in the ACMTHMS or MATHMLPHD programs.) Lecture 2 (Spring). 
1 
Math Graduate Core Electives 
9  
General Education – Immersion 3 
3  
General Education – Elective 
3  
Open Electives 
6  
Fifth Year  
MATH790  Research and Thesis Masterslevel research by the candidate on an appropriate topic as arranged between the candidate and the research advisor. (This course is restricted to students in the ACMTHMS or MATHMLPHD programs.) Thesis (Fall, Spring, Summer). 
4 
MATH Graduate Electives 
15  
Total Semester Credit Hours  145 
Please see General Education Curriculum (GE) for more information.
(WI) Refers to a writing intensive course within the major.
Please see Wellness Education Requirement for more information. Students completing bachelor's degrees are required to complete two different Wellness courses.
‡ Students will satisfy this requirement by taking either University Physics I (PHYS211) and University Physics II (PHYS212) or General & Analytical Chemistry I and Lab (CHMG141/145) and General & Analytical Chemistry II and Lab (CHMG142/146) or General Biology I and Lab (BIOL101/103) and General Biology II and Lab (BIOL102/104).