Applied Statistics Adv. Cert.

Applied Statistics, advanced certificate, typical course sequence

Course Sem. Cr. Hrs.
First Year
Applied Linear Models - Regression
A course that studies how a response variable is related to a set of predictor variables. Regression techniques provide a foundation for the analysis of observational data and provide insight into the analysis of data from designed experiments. Topics include happenstance data versus designed experiments, simple linear regression, the matrix approach to simple and multiple linear regression, analysis of residuals, transformations, weighted least squares, polynomial models, influence diagnostics, dummy variables, selection of best linear models, nonlinear estimation, and model building. (This course is restricted to students in APPSTAT-MS or SMPPI-ACT.) Lecture 3 (Fall, Spring).
Applied Linear Models - ANOVA
This course introduces students to analysis of models with categorical factors, with emphasis on interpretation. Topics include the role of statistics in scientific studies, fixed and random effects, mixed models, covariates, hierarchical models, and repeated measures. (This class is restricted to students in the APPSTAT-MS, SMPPI-ACT, STATQL-ACT or MMSI-MS programs.) Lecture 3 (Fall, Spring).
Total Semester Credit Hours