Health Informatics Master of science degree

d9a1a788-7cc7-48f9-9c6d-822c2b37d794 | 6218907


View Online

Demand is high for health informaticists–those professionals who are well versed in applying computing and information technology solutions to the management of health care information and patient data. This health informatics masters will give you the knowledge and experience you need to succeed in this evolving field.

With an increase in the application and use of computing in the health care industry, there is an unprecedented need for professionals who can harness the creative power of information technology to make an impact on the acquisition, storage, management, and retrieval of patient data, as well as access medical data needed to improve patient care, research, and education. A health informatics masters provides professionals with an understanding of formal medical terminology, clinical processes, and guidelines; and an understanding of how information and communication systems can be used to successfully deliver patient information in various health care settings.

Plan of study

The MS in health informatics is only available online. It applies the creative power of information technology to the information and data needs of health care. The program offers two tracks: the clinician track and analyst track.

The program is designed for working professionals in diverse health care clinical and technology settings. The curriculum consists of seven core courses and concentration selections from six track courses. These track courses will focus on software development, system integration, data analysis, clinical application building, systems analysis, and project management. The MS in health informatics draws upon the interdisciplinary strengths of the colleges within RIT, along with its health care partner, Rochester Regional Health System (RRH).

This program is offered exclusively online. View Online Details.


  • Health Care

  • Internet and Software

  • Scientific and Technical Consulting

  • Research

Curriculum for Health Informatics MS

Health Informatics, MS degree, typical course sequence

Course Sem. Cr. Hrs.
First Year
Foundations of Human-Computer Interaction
Human-computer interaction (HCI) is a field of study concerned with the design, evaluation and implementation of interactive computing systems for human use and with the study of major phenomena surrounding them. This course surveys the scope of issues and foundations of the HCI field: cognitive psychology, human factors, interaction styles, user analysis, task analysis, interaction design methods and techniques, and evaluation. This course will focus on the users and their tasks. (This class is restricted to degree-seeking graduate students or those with permission from instructor.) Lecture 3 (Fall, Spring).
Introduction to Health Informatics
This course provides a rigorous introduction to the principles of medical informatics. The focus of this course is on the study of the nature of medical information and its use in clinical practice and clinical quality improvement. Key topics include: the electronic medical record (EMR) and its impact on health care delivery, the Internet and mobile computing as sources of medical information, Health care information systems, the software development lifecycle, the importance of the informatics specialists in medicine and the various roles they can play, and government economic incentives and policy issues in healthcare such as privacy, confidentiality, including health care regulatory and accreditation issues and the Health Insurance Portability and Accountability Act (HIPAA). Students will participate in online discussion of medical informatics. They will also investigate several topics of interest in the field and provide presentations. (This class is restricted to degree-seeking graduate students or those with permission from instructor.) Lecture 3 (Fall).
Practice of Health Care (summer)
This course is an introduction to clinical practice for graduate students in medical informatics. It consists of the study of six medical specialties including shadowing of clinicians in these areas. Students in this course will be part of a team of health care professionals in the selected specialties. They will round with providers, assist with information gathering and dissemination, and observe specialty specific disease process, diagnosis and treatment. They will observe and note clinical workflow and technology usage. They will interact with team members and assist with the acquisition of reference knowledge as appropriate. They will keep a log of cases during the rotation and use this as the basis for their research project and case presentation. (Prerequisites: MEDI-701 or equivalent course and graduate student standing.) Lecture 3 (Fall, Spring, Summer).
Medical Knowledge Structures
This course presents concepts related to organization and retrieval of knowledge-based information in the health sciences. It includes a study of classification schemes, controlled vocabularies and thesauri, metadata, and ontologies. Major schemes and systems examined, for example, include MeSH, UMLS, and PubMed. Also covered are the topics of knowledge retrieval at the point of care, and knowledge discovery. (Prerequisites: MEDI-701 or equivalent course and graduate student standing.) Lecture 3 (Fall).
Clinical Information Systems
A study of the component approach to clinical information systems. Students will learn about the evolution of Health Information Systems, and the variety of systems offered by vendors at the present time. The importance of the Electronic Health Record (EHR), the Computerized Physician Order Entry (CPOE) and Clinical Decision Support will be stressed as they become the focal points in clinical information systems. The following components will be studied in detail: patient, activity, health record, knowledge, and security components. The role of imaging management and integration will also be reviewed. (Prerequisites: MEDI-701 or equivalent course and graduate student standing.) Lecture 3 (Spring).
Second Year
Project Management
Information technology projects require the application of sound project management principles in order to be developed on time, on budget, and on specification. This course takes students through the nine knowledge areas of modern project management and the utilization of project management principles in both traditional and agile environments. Lecture 3 (Fall).
Capstone in Health Informatics
This team-based course provides students with the opportunity to apply the knowledge and skills learned in coursework to design, develop, and implement a solution to a real problem in the medical informatics domain. Project teams also will be responsible for submitting a final project report, and for making a final presentation to project stakeholders. (Completion of first year courses) (Prerequisite: MEDI-701 and MEDI-705 and MEDI-735 and MEDI-704 and HCIN-610 and Graduate standing.) Lecture 3 (Summer).
Track Electives
Total Semester Credit Hours


Analyst track
Visual Analytics
This course introduces students to Visual Analytics, or the science of analytical reasoning facilitated by interactive visual interfaces. Course lectures, reading assignments, and practical lab experiences will cover a mix of theoretical and technical Visual Analytics topics. Topics include analytical reasoning, human cognition and perception of visual information, visual representation and interaction technologies, data representation and transformation, production, presentation, and dissemination of analytic process results, and Visual Analytic case studies and applications. Furthermore, students will learn relevant Visual Analytics research trends such as Space, Time, and Multivariate Analytics and Extreme Scale Visual Analytics. Lec/Lab 3 (Spring).
Medical Application Integration
A typical hospital information system architecture contains a variety of best of breed applications running on different hardware and software platforms. Exchange of information between these applications can be a significant problem. In this course, students will learn how to leverage the loose coupling of service-oriented architectures and message oriented middleware to address the issues of data integration between these types of computer programs when executing across domains. Programming projects will be required. (Students will need a database theory course, and one year of object-oriented programming to be successful in this course) (Prerequisites: MEDI-701 and ISTE-608 and ISTE-200 or equivalent courses and graduate student standing.) Lecture 3 (Fall).
Building the Electronic Health Record
This course explores the acquisition, storage, and use of information in the electronic health record (EHR) through hands-on development and programming. Students will learn about the types of information used in clinical care: text, structured data, images, and sounds. Other topics covered include: clinical vocabularies (existing schemes and their limitations); how clinical information is generated and utilized; methods of information storage and retrieval; departmental systems (laboratory, radiology, and hospital information systems); organizational systems (including scheduling, registration and financial systems); and the legal, social and regulatory problems of EHRs including security and confidentiality. (Prerequisites: HCIN-610 and MEDI-705 or equivalent courses and graduate student standing.) Lec/Lab 3 (Spring).
Clinician track
Database Design And Implementation
An introduction to the theory and practice of designing and implementing database systems. Current software environments are used to explore effective database design and implementation concepts and strategies. Topics include conceptual data modeling, methodologies, logical/physical database design, normalization, relational algebra, schema creation and data manipulation, and transaction design. Database design and implementation projects are required. (Prerequisite: ISTE-200 or equivalent course.) Lec/Lab 4 (Fall).
Scripting Fundamentals
This course is an introductory scripting course. Students will learn to design software solutions using the procedural approach, to implement software solutions using a contemporary programming language, and to test these software solutions. Topics include problem definitions, designing solutions, implementing solutions using a contemporary programming language, implementing a contemporary library/framework, and testing software solutions. Programming projects will be required. (This class is restricted to degree-seeking graduate students or those with permission from instructor.) Lec/Lab 3 (Spring).
System Integration Concepts
This course will provide students with an understanding of application integration concepts in healthcare. Students will also learn medical business processes and how they impact data integration within a healthcare setting. Middleware message brokers will be examined along with the use of the HL7 messaging standard. Web services and other forms of data integration will be studied. Students will develop integration solutions to support healthcare information systems exchange and validation procedures and solutions to ensure the quality of information exchanged between healthcare systems. (This class is restricted to degree-seeking graduate students or those with permission from instructor.) Lecture 3 (Spring).

Admission Requirements

To be considered for admission into the MS program in health informatics, candidates must fulfill the following requirements:

  • Complete a graduate application.
  • Hold a baccalaureate degree (or equivalent) from an accredited university or college.
  • Submit official transcripts (in English) of all previously completed undergraduate and graduate course work.
  • Have a minimum cumulative GPA of 3.0 (or equivalent).
  • Submit two letters of recommendation from individuals who are able to assess the applicant’s potential for success in the program.
  • Submit a current resume or curriculum vitae.
  • International applicants whose native language is not English must submit scores from the TOEFL, IELTS, or PTE. A minimum TOEFL score of 88 (internet-based) is required. A minimum IELTS score of 6.5 is required. The English language test score requirement is waived for native speakers of English or for those submitting transcripts from degrees earned at American institutions.
  • Applicants from international universities are required to submit GRE scores.
  • It is recommended that applicants have a minimum of three years of experience in a health care, health-related, or information technology organization. Applicants who do not meet this requirement may be asked to complete certain undergraduate/graduate level courses as a prerequisite.
  • An interview with the program’s admissions committee may also be required.

Please note: Applications should be submitted for fall admission. For priority consideration, please submit all application materials a minimum of six weeks prior to your intended start date.


It is expected that prospective students who plan to pursue the analyst track will have a background in fundamental information technology concepts including object-oriented programming and statistics. Students without the necessary background should complete the prerequisites before applying to the program. However, bridge courses are available to satisfy the prerequisites.

Bridge program

Students whose undergraduate preparation or employment experience does not satisfy the prerequisites can make up these deficiencies by completing prerequisite bridge courses as prescribed by the graduate program director. The bridge courses are not part of the 30 semester credit hours required for the master’s degree. Grades for bridge courses are not included in a student’s GPA if the courses are taken before matriculation; they are included if completed after matriculation. Since bridge programs can be designed in a variety of ways, the graduate program director will assist students in planning and course selection.

Please note: Certain countries are subject to comprehensive embargoes under US Export Controls, which prohibit virtually ALL exports, imports, and other transactions without a license or other US Government authorization. Learners from Syria, Sudan, North Korea, the Crimea region of the Ukraine, Iran, and Cuba may not register for RIT online courses. Nor may individuals on the United States Treasury Department’s list of Specially Designated Nationals or the United States Commerce Department’s table of Deny Orders. By registering for RIT online courses, you represent and warrant that you are not located in, under the control of, or a national or resident of any such country or on any such list.

Learn about admissions, cost, and financial aid 

Latest News

  • June 30, 2020

    Matt Huenerfauth.

    Matt Huenerfauth named director of iSchool in GCCIS

    Matt Huenerfauth, a professor and expert in computing accessibility research, has been named director of RIT’s iSchool (School of Information). Huenerfauth takes the helm Aug. 1 from Stephen Zilora, who is stepping down after eight years of leadership.

  • August 20, 2019

    Computer keyboard and mouse.

    New School of Information formed in RIT’s Golisano Computing College

    RIT’s Golisano College of Computing and Information Sciences is forming a new School of Information to recognize the changing roles of information professionals. The school aims to bridge the digital divide and make computing solutions available, accessible, usable and suitable to all.