Astronomy Immersion

3bdaa52a-87e0-4272-961a-500a073f5c64 | 6218541

Overview

The astronomy immersion provides students with the opportunity for additional study in astronomy in order to build a secondary area of expertise in support of their major or other areas of interest. The immersion offers a broad background in astronomy with courses providing a broad survey of modern astrophysics and the techniques and technologies used to investigate astronomical phenomena. 

Notes about this immersion:

  • This immersion is closed to students majoring in imaging science and physics.

The program code for Astronomy Immersion is ASTRO-IM.

Curriculum for Astronomy Immersion

Course
Prerequisites
PHYS-211
University Physics I
This is a course in calculus-based physics for science and engineering majors. Topics include kinematics, planar motion, Newton's Laws, gravitation, work and energy, momentum and impulse, conservation laws, systems of particles, rotational motion, static equilibrium, mechanical oscillations and waves, and data presentation/analysis. The course is taught in a workshop format that integrates the material traditionally found in separate lecture and laboratory courses. (Prerequisites: C- or better in MATH-181 or equivalent course. Co-requisites: MATH-182 or equivalent course.) Lec/Lab 6 (Fall, Spring).
PHYS-212
University Physics II
This course is a continuation of PHYS-211, University Physics I. Topics include electrostatics, Gauss' law, electric field and potential, capacitance, resistance, DC circuits, magnetic field, Ampere's law, inductance, and geometrical and physical optics. The course is taught in a lecture/workshop format that integrates the material traditionally found in separate lecture and laboratory courses. (Prerequisites: (PHYS-211 or PHYS-211A or PHYS-206 or PHYS-216) or (MECE-102, MECE-103 and MECE-205) and (MATH-182 or MATH-172 or MATH-182A) or equivalent courses. Grades of C- or better are required in all prerequisite courses.) Lec/Lab 6 (Fall, Spring).
Required course
PHYS-220
University Astronomy
This course is an introduction to the basic concepts of astronomy and astrophysics for scientists and engineers. Topics include the celestial sphere, celestial mechanics, methods of data acquisition, planetary systems, stars and stellar systems, cosmology, and life in the universe. (Prerequisites: PHYS-211 or PHYS-211A or PHYS-207 or PHYS-216 or (MECE-102 and MECE-103 and MECE-205) or equivalent courses.) Lecture 3 (Fall, Spring).
Electives
Choose two of the following:
   PHYS-370
   Stellar Astrophysics
This course presents concepts of stars and stellar systems at an intermediate level. Topics include the observed characteristics of stars, stellar atmospheres, stellar structure and evolution, interaction of stars with the interstellar medium, and the populations of stars within the Milky Way Galaxy. (Prerequisites: PHYS-213 and PHYS-220 or equivalent courses. Students in the PHYS-BS program are also required to complete PHYS-275 prior to taking this course.) Lecture 3 .
   PHYS-371
   Galactic Astrophysics
This course describes the structure and dynamics of the Milky Way galaxy. It provides an overview of the major constituents of the Milky Way, their interactions, and the methods by which astronomers study them. (Prerequisites: PHYS-213 and PHYS-220 or equivalent courses. Students in the PHYS-BS program are also required to complete PHYS-275 prior to taking this course.) Lecture 3 (Fall).
   PHYS-372
   Extragalactic Astrophysics and Cosmology
This course provides a survey of the structure of the universe on the largest scales, including galaxies and clusters of galaxies. The course also provides an overview of the history of the universe from the Big Bang to the current day, and describes the observational evidence for our current values of the cosmological parameters. (Prerequisites: PHYS-213 and PHYS-220 or equivalent courses. Students in the PHYS-BS program are also required to complete PHYS-275 prior to taking this course.) Lecture 3 (Fall).
   PHYS-373
   Observational Astronomy
This course provides a practical, hands-on introduction to optical astronomy. Students will use the RIT Observatory's telescopes and CCD cameras to take images of celestial objects, reduce the data, and analyze the results. The course will emphasize the details of image processing required to remove instrumental effects from CCD images. (Prerequisites: PHYS-220 or equivalent course. Students in the PHYS-BS program are also required to complete PHYS-275 prior to taking this course.) Lab 2, Lecture 2 (Spring).