Computational Mathematics Bachelor of science degree

936cab1b-2068-44f5-8acc-689181f8ae31 | 6219057

Overview

Dual Degree

The computational mathematics degree emphasizes problem solving using mathematical models to identify solutions in business, science, engineering, and more.


The computational mathematics major combines the beauty and logic of mathematics with the application of today’s fastest and most powerful computers. The major uses computers as problem-solving tools to come up with mathematical solutions to real-world problems in engineering, operations research, economics, business and other areas of science. The skills you learn can be applied to everyday life, from computing security and telecommunication networking to routes for school buses and delivery companies. The computational mathematics major gives you a solid foundation in both mathematics and computational methods that you need to be successful in the field or in graduate school.

Computational mathematics prepares you for a mathematical career that incorporates extensive computer science skills. In this major, much emphasis is given to the use of the computer as a tool to solve mathematically modeled physical problems. Students often pursue positions as mathematical analysts, scientific programmers, software engineers, or systems analysts. Job opportunities in private industry and government abound in this field.

Course of study

The curriculum provides a foundation in mathematics through courses in calculus, differential equations, graph theory, abstract and linear algebra, mathematical modeling, numerical analysis, and several other areas. Students are required to complete an experiential learning component of the program, as approved by the School of Mathematical Sciences. Students are encouraged to participate in research opportunities or cooperative education experiences. You will gain extensive computing skills through a number of high-level programming, system design, and other computer science courses.

Nature of work

Mathematicians use mathematical theory, computational techniques, algorithms, and the latest computer technology to solve economic, scientific, engineering, physics, and business problems.

Industries


  • Insurance

  • Government (Local, State, Federal)

  • Internet and Software

  • Defense

  • Electronic and Computer Hardware

  • Manufacturing

Typical Job Titles

Software Engineer Computer Scientist
Analyst (e.g. Operations Research) Cryptanalyst (codes)
Actuary Market Researcher
Financial Advisor

88%

outcome rate of graduates

$79.8K

median first-year salary of graduates

Cooperative Education

Cooperative education, or co-op for short, is full-time, paid work experience in your field of study. And it sets RIT graduates apart from their competitors. It’s exposure–early and often–to a variety of professional work environments, career paths, and industries. RIT co-op is designed for your success.

Although cooperative education is optional for computational mathematics students, it may be used to fulfill the experiential learning component of the program. Students have worked in a variety of settings on problem-solving teams with engineers, biologists, computer scientists, physicists, and marketing specialists.

Explore salary and career information for Computational Mathematics BS 

Featured Profiles

Curriculum for Computational Mathematics BS

Computational Mathematics, BS degree, typical course sequence

Course Sem. Cr. Hrs.
First Year
CSCI-141
General Education – Elective: Computer Science I
This course serves as an introduction to computational thinking using a problem-centered approach. Specific topics covered include: expression of algorithms in pseudo code and a programming language; functional and imperative programming techniques; control structures; problem solving using recursion; basic searching and sorting; elementary data structures such as lists, trees, and graphs; and correctness, testing and debugging. Assignments (both in class and for homework) requiring a pseudo code solution and an implementation are an integral part of the course. An end-of-term project is also required. Lec/Lab 6 (Fall, Spring).
4
CSCI-142
General Education – Elective: Computer Science II
This course delves further into problem solving by continuing the discussion of data structure use and design, but now from an object-oriented perspective. Key topics include more information on tree and graph structures, nested data structures, objects, classes, inheritance, interfaces, object-oriented collection class libraries for abstract data types (e.g. stacks, queues, maps, and trees), and static vs. dynamic data types. Concepts of object-oriented design are a large part of the course. Software qualities related to object orientation, namely cohesion, minimal coupling, modifiability, and extensibility, are all introduced in this course, as well as a few elementary object-oriented design patterns. Input and output streams, graphical user interfaces, and exception handling are covered. Students will also be introduced to a modern integrated software development environment (IDE). Programming projects will be required. (Prerequisites: CSCI-141 with a grade of C- or better or equivalent course.) Lec/Lab 6 (Fall, Spring, Summer).
4
MATH-181
General Education – Mathematical Perspective A: Project-Based Calculus I
This is the first in a two-course sequence intended for students majoring in mathematics, science, or engineering. It emphasizes the understanding of concepts, and using them to solve physical problems. The course covers functions, limits, continuity, the derivative, rules of differentiation, applications of the derivative, Riemann sums, definite integrals, and indefinite integrals. (Prerequisite: A- or better in MATH-111 or A- or better in ((NMTH-260 or NMTH-272 or NMTH-275) and NMTH-220) or a math placement exam score greater than or equal to 70 or department permission to enroll in this class.) Lecture 6 (Fall, Spring, Summer).
4
MATH-182
General Education – Mathematical Perspective B: Project-Based Calculus II
This is the second in a two-course sequence intended for students majoring in mathematics, science, or engineering. It emphasizes the understanding of concepts, and using them to solve physical problems. The course covers techniques of integration including integration by parts, partial fractions, improper integrals, applications of integration, representing functions by infinite series, convergence and divergence of series, parametric curves, and polar coordinates. (Prerequisites: C- or better in (MATH-181 or MATH-173 or 1016-282) or (MATH-171 and MATH-180) or equivalent course(s).) Lecture 6 (Fall, Spring, Summer).
4
MATH-199
Mathematics and Statistics Seminar
This course introduces the programs within the School of Mathematical Sciences, and provides an introduction to math and statistics software. The course provides practice in technical writing. Seminar 1 (Fall).
1
YOPS-10
RIT 365: RIT Connections
RIT 365 students participate in experiential learning opportunities designed to launch them into their career at RIT, support them in making multiple and varied connections across the university, and immerse them in processes of competency development. Students will plan for and reflect on their first-year experiences, receive feedback, and develop a personal plan for future action in order to develop foundational self-awareness and recognize broad-based professional competencies. Lecture 1 (Fall, Spring).
0
 
General Education – Artistic Perspective
3
 
General Education – Natural Science Inquiry Perspective‡
4
 
General Education – Elective
3
 
General Education – First-Year Writing (WI)
3
Second Year
CSCI-243
The Mechanics of Programming
Students will be introduced to the details of program structure and the mechanics of execution as well as supportive operating system features. Security and performance issues in program design will be discussed. The program translation process will be examined. Programming assignments will be required. (Prerequisites: (CSCI-140 or CSCI-142 or CSCI-242) with a grade of C- or better or equivalent course.) Lecture 3 (Fall, Spring, Summer).
3
CSCI-262
Introduction to Computer Science Theory
This course provides an introduction to the theory of computation, including formal languages, grammars, auto-mata theory, computability, and complexity. (Prerequisites: (MATH-190 or MATH-200 or 1016-366) and (CSCI-140 or CSCI-141 or CSCI-142 or CSCI-242 or 4003-242) or equivalent courses.) Lecture 3 (Fall, Spring, Summer).
3
MATH-200
Discrete Mathematics and Introduction to Proofs
This course prepares students for professions that use mathematics in daily practice, and for mathematics courses beyond the introductory level where it is essential to communicate effectively in the language of mathematics. It covers various methods of mathematical proof, starting with basic techniques in propositional and predicate calculus and set theory, and then moving to applications in advanced mathematics. (Prerequisite: MATH-173 or MATH-182 or MATH-182A or equivalent course.) Lecture 3, Recitation 4 (Fall).
3
MATH-231
Differential Equations
This course is an introduction to the study of ordinary differential equations and their applications. Topics include solutions to first order equations and linear second order equations, method of undetermined coefficients, variation of parameters, linear independence and the Wronskian, vibrating systems, and Laplace transforms. (Prerequisite: MATH-173 or MATH-182 or MATH-182A or equivalent course.) Lecture 3 (Fall, Spring, Summer).
3
MATH-251
Probability and Statistics I
This course introduces sample spaces and events, axioms of probability, counting techniques, conditional probability and independence, distributions of discrete and continuous random variables, joint distributions (discrete and continuous), the central limit theorem, descriptive statistics, interval estimation, and applications of probability and statistics to real-world problems. A statistical package such as Minitab or R is used for data analysis and statistical applications. (Prerequisites: MATH-173 or MATH-182 or MATH 182A or equivalent course.) Lecture 3 (Fall, Spring, Summer).
3
MATH-399
Mathematical Sciences Job Search Seminar
This course helps students prepare to search for co-op or full-time employment. Students will learn strategies for conducting a successful job search and transitioning into the work world. The course meets one hour each week for five weeks. Lecture 1 (Fall, Spring).
0
Choose one of the following:
4
   MATH-221
   General Education – Elective: Multivariable and Vector Calculus
This course is principally a study of the calculus of functions of two or more variables, but also includes a study of vectors, vector-valued functions and their derivatives. The course covers limits, partial derivatives, multiple integrals, Stokes' Theorem, Green's Theorem, the Divergence Theorem, and applications in physics. Credit cannot be granted for both this course and MATH-219. (Prerequisite: C- or better MATH-173 or MATH-182 or MATH-182A or equivalent course.) Lecture 4 (Fall, Spring, Summer).
 
   MATH-221H
   General Education – Elective: Honors Multivariable and Vector Calculus
 
Choose one of the following:
3
   MATH-241
   Linear Algebra
This course is an introduction to the basic concepts of linear algebra, and techniques of matrix manipulation. Topics include linear transformations, Gaussian elimination, matrix arithmetic, determinants, vector spaces, linear independence, basis, null space, row space, and column space of a matrix, eigenvalues, eigenvectors, change of basis, similarity and diagonalization. Various applications are studied throughout the course. (Prerequisites: MATH-190 or MATH-200 or MATH-219 or MATH-220 or MATH-221 or MATH-221H or equivalent course.) Lecture 3 (Fall, Spring).
 
   MATH-241H
   Honors Linear Algebra
 
 
General Education – Ethical Perspective
3
 
General Education – Global Perspective
3
 
General Education – Scientific Principles Perspective‡
4
Third Year
MATH-411
Numerical Analysis
This course covers numerical techniques for the solution of nonlinear equations, interpolation, differentiation, integration, and the solution of initial value problems. (Prerequisites: (MATH-231 and MATH-241) or MATH-233 or equivalent courses.) Lecture 3 (Fall).
3
MATH-431
Real Variables I
This course is an investigation and extension of the theoretical aspects of elementary calculus. Topics include mathematical induction, real numbers, sequences, functions, limits, and continuity. The workshop will focus on helping students develop skill in writing proofs. (Prerequisites: (MATH-190 or MATH-200 or 1055-265) and (MATH-220 or MATH-221 or MATH-221H or 1016-410 or 1016-328) or equivalent courses.) Lec/Lab 4 (Fall, Spring).
3
 
Program Electives†
12
 
General Education – Social Perspective
3
 
General Education – Immersion 1
3
 
General Education – Elective
3
 
Open Elective
3
Fourth Year
MATH-421
Mathematical Modeling (WI-PR)
This course explores problem solving, formulation of the mathematical model from physical considerations, solution of the mathematical problem, testing the model and interpretation of results. Problems are selected from the physical sciences, engineering, and economics. (Prerequisites: (MATH-220 or MATH-221 or 1016-410 or 1016-328) and MATH-231 and MATH-241 and MATH-251 or equivalent courses.) Lecture 3 (Fall).
3
MATH-441
Abstract Algebra I
This course covers basic set theory, number theory, groups, subgroups, cyclic and permutation groups, Lagrange and Sylow theorems, quotient groups, and isomorphism theorems. Group Theory finds applications in other scientific disciplines like physics and chemistry. (Prerequisites: (MATH-190 or MATH-200 or 1055-265) and MATH-241 or equivalent courses.) Lec/Lab 4 (Fall, Spring).
3
 
Program Electives†
6
 
General Education – Immersion 2, 3
6
 
General Education – Elective Three
3
 
Open Elective
9
Total Semester Credit Hours
122

Please see General Education Curriculum (GE) for more information.

(WI) Refers to a writing intensive course within the major.

Please see Wellness Education Requirement for more information. Students completing bachelor's degrees are required to complete two different Wellness courses.

† Three of the program electives must be MATH or STAT courses with course numbers of at least 250, and either Graph Theory (MATH-351) or Numerical Linear Algebra (MATH-412) must be one of the three courses. Three of the program electives must be CSCI courses (SWEN-261 is also acceptable as one of these three courses). The remaining electives can be either a CSCI, MATH, or STAT course with a course number of at least 250.

‡ Students will satisfy this requirement by taking either University Physics I (PHYS-211) and University Physics II (PHYS-212) or General & Analytical Chemistry I and Lab (CHMG-141/145) and General & Analytical Chemistry II and Lab (CHMG-142/146) or General Biology I and Lab (BIOL-101/103) and General Biology II and Lab (BIOL-102/104).

§ Students are required to complete an experiential learning component of the program, as approved by the School of Mathematical Sciences. Students are urged to fulfill this requirement by participating in research opportunities or co-op experiences; students can also fulfill this requirement by taking MATH-500 as a program elective.

Accelerated dual degree options

Accelerated dual degree options are for undergraduate students with outstanding academic records. Upon acceptance, well-qualified undergraduate students can begin graduate study before completing their BS degree, shortening the time it takes to earn both degrees. Students should consult an academic advisor for more information.

Computational Mathematics, BS degree/Applied and Computational Mathematics (thesis option), MS degree, typical course sequence

Course Sem. Cr. Hrs.
First Year
CSCI-141
General Education – Elective: Computer Science I
This course serves as an introduction to computational thinking using a problem-centered approach. Specific topics covered include: expression of algorithms in pseudo code and a programming language; functional and imperative programming techniques; control structures; problem solving using recursion; basic searching and sorting; elementary data structures such as lists, trees, and graphs; and correctness, testing and debugging. Assignments (both in class and for homework) requiring a pseudo code solution and an implementation are an integral part of the course. An end-of-term project is also required. Lec/Lab 6 (Fall, Spring).
4
CSCI-142
General Education – Elective: Computer Science II
This course delves further into problem solving by continuing the discussion of data structure use and design, but now from an object-oriented perspective. Key topics include more information on tree and graph structures, nested data structures, objects, classes, inheritance, interfaces, object-oriented collection class libraries for abstract data types (e.g. stacks, queues, maps, and trees), and static vs. dynamic data types. Concepts of object-oriented design are a large part of the course. Software qualities related to object orientation, namely cohesion, minimal coupling, modifiability, and extensibility, are all introduced in this course, as well as a few elementary object-oriented design patterns. Input and output streams, graphical user interfaces, and exception handling are covered. Students will also be introduced to a modern integrated software development environment (IDE). Programming projects will be required. (Prerequisites: CSCI-141 with a grade of C- or better or equivalent course.) Lec/Lab 6 (Fall, Spring, Summer).
4
MATH-181
General Education – Mathematical Perspective A: Project-Based Calculus I
This is the first in a two-course sequence intended for students majoring in mathematics, science, or engineering. It emphasizes the understanding of concepts, and using them to solve physical problems. The course covers functions, limits, continuity, the derivative, rules of differentiation, applications of the derivative, Riemann sums, definite integrals, and indefinite integrals. (Prerequisite: A- or better in MATH-111 or A- or better in ((NMTH-260 or NMTH-272 or NMTH-275) and NMTH-220) or a math placement exam score greater than or equal to 70 or department permission to enroll in this class.) Lecture 6 (Fall, Spring, Summer).
4
MATH-182
General Education – Mathematical Perspective B: Project-Based Calculus II
This is the second in a two-course sequence intended for students majoring in mathematics, science, or engineering. It emphasizes the understanding of concepts, and using them to solve physical problems. The course covers techniques of integration including integration by parts, partial fractions, improper integrals, applications of integration, representing functions by infinite series, convergence and divergence of series, parametric curves, and polar coordinates. (Prerequisites: C- or better in (MATH-181 or MATH-173 or 1016-282) or (MATH-171 and MATH-180) or equivalent course(s).) Lecture 6 (Fall, Spring, Summer).
4
MATH-199
Mathematics and Statistics Seminar
This course introduces the programs within the School of Mathematical Sciences, and provides an introduction to math and statistics software. The course provides practice in technical writing. Seminar 1 (Fall).
1
YOPS-10
RIT 365: RIT Connections
RIT 365 students participate in experiential learning opportunities designed to launch them into their career at RIT, support them in making multiple and varied connections across the university, and immerse them in processes of competency development. Students will plan for and reflect on their first-year experiences, receive feedback, and develop a personal plan for future action in order to develop foundational self-awareness and recognize broad-based professional competencies. Lecture 1 (Fall, Spring).
0
 
General Education – Artistic Perspective
3
 
General Education – Natural Science Inquiry Perspective‡
4
 
General Education – Elective
3
 
General Education – First-Year Writing (WI)
3
 
Open Elective
3
Second Year
CSCI-243
The Mechanics of Programming
Students will be introduced to the details of program structure and the mechanics of execution as well as supportive operating system features. Security and performance issues in program design will be discussed. The program translation process will be examined. Programming assignments will be required. (Prerequisites: (CSCI-140 or CSCI-142 or CSCI-242) with a grade of C- or better or equivalent course.) Lecture 3 (Fall, Spring, Summer).
3
CSCI-262
Introduction to Computer Science Theory
This course provides an introduction to the theory of computation, including formal languages, grammars, auto-mata theory, computability, and complexity. (Prerequisites: (MATH-190 or MATH-200 or 1016-366) and (CSCI-140 or CSCI-141 or CSCI-142 or CSCI-242 or 4003-242) or equivalent courses.) Lecture 3 (Fall, Spring, Summer).
3
MATH-200
Discrete Mathematics and Introduction to Proofs
This course prepares students for professions that use mathematics in daily practice, and for mathematics courses beyond the introductory level where it is essential to communicate effectively in the language of mathematics. It covers various methods of mathematical proof, starting with basic techniques in propositional and predicate calculus and set theory, and then moving to applications in advanced mathematics. (Prerequisite: MATH-173 or MATH-182 or MATH-182A or equivalent course.) Lecture 3, Recitation 4 (Fall).
3
MATH-231
Differential Equations
This course is an introduction to the study of ordinary differential equations and their applications. Topics include solutions to first order equations and linear second order equations, method of undetermined coefficients, variation of parameters, linear independence and the Wronskian, vibrating systems, and Laplace transforms. (Prerequisite: MATH-173 or MATH-182 or MATH-182A or equivalent course.) Lecture 3 (Fall, Spring, Summer).
3
MATH-251
Probability and Statistics I
This course introduces sample spaces and events, axioms of probability, counting techniques, conditional probability and independence, distributions of discrete and continuous random variables, joint distributions (discrete and continuous), the central limit theorem, descriptive statistics, interval estimation, and applications of probability and statistics to real-world problems. A statistical package such as Minitab or R is used for data analysis and statistical applications. (Prerequisites: MATH-173 or MATH-182 or MATH 182A or equivalent course.) Lecture 3 (Fall, Spring, Summer).
3
MATH-399
Mathematical Sciences Job Search Seminar
This course helps students prepare to search for co-op or full-time employment. Students will learn strategies for conducting a successful job search and transitioning into the work world. The course meets one hour each week for five weeks. Lecture 1 (Fall, Spring).
0
Choose one of the following:
4
   MATH-221
   General Education – Elective: Multivariable and Vector Calculus
This course is principally a study of the calculus of functions of two or more variables, but also includes a study of vectors, vector-valued functions and their derivatives. The course covers limits, partial derivatives, multiple integrals, Stokes' Theorem, Green's Theorem, the Divergence Theorem, and applications in physics. Credit cannot be granted for both this course and MATH-219. (Prerequisite: C- or better MATH-173 or MATH-182 or MATH-182A or equivalent course.) Lecture 4 (Fall, Spring, Summer).
 
   MATH-221H
   General Education – Elective: Honors Multivariable and Vector Calculus
 
Choose one of the following:
3
   MATH-241
   Linear Algebra
This course is an introduction to the basic concepts of linear algebra, and techniques of matrix manipulation. Topics include linear transformations, Gaussian elimination, matrix arithmetic, determinants, vector spaces, linear independence, basis, null space, row space, and column space of a matrix, eigenvalues, eigenvectors, change of basis, similarity and diagonalization. Various applications are studied throughout the course. (Prerequisites: MATH-190 or MATH-200 or MATH-219 or MATH-220 or MATH-221 or MATH-221H or equivalent course.) Lecture 3 (Fall, Spring).
 
   MATH-241H
   Honors Linear Algebra
 
 
General Education – Ethical Perspective
3
 
General Education – Global Perspective
3
 
General Education – Scientific Principles Perspective‡
4
Third Year
MATH-431
Real Variables I
This course is an investigation and extension of the theoretical aspects of elementary calculus. Topics include mathematical induction, real numbers, sequences, functions, limits, and continuity. The workshop will focus on helping students develop skill in writing proofs. (Prerequisites: (MATH-190 or MATH-200 or 1055-265) and (MATH-220 or MATH-221 or MATH-221H or 1016-410 or 1016-328) or equivalent courses.) Lec/Lab 4 (Fall, Spring).
3
MATH-441
Abstract Algebra I
This course covers basic set theory, number theory, groups, subgroups, cyclic and permutation groups, Lagrange and Sylow theorems, quotient groups, and isomorphism theorems. Group Theory finds applications in other scientific disciplines like physics and chemistry. (Prerequisites: (MATH-190 or MATH-200 or 1055-265) and MATH-241 or equivalent courses.) Lec/Lab 4 (Fall, Spring).
3
 
Program Electives
12
 
General Education – Social Perspective
3
 
General Education – Immersion 1, 2
6
 
General Education – Elective
3
Fourth Year
MATH-421
Mathematical Modeling (WI-PR)
This course explores problem solving, formulation of the mathematical model from physical considerations, solution of the mathematical problem, testing the model and interpretation of results. Problems are selected from the physical sciences, engineering, and economics. (Prerequisites: (MATH-220 or MATH-221 or 1016-410 or 1016-328) and MATH-231 and MATH-241 and MATH-251 or equivalent courses.) Lecture 3 (Fall).
3
MATH-602
Numerical Analysis I
This course covers numerical techniques for the solution of nonlinear equations, interpolation, differentiation, integration, and matrix algebra. (Prerequisites: (MATH-241 and MATH-431) or equivalent courses or graduate standing in ACMTH-MS or MATHML-PHD programs.) Lecture 3 (Fall).
3
MATH-606
Graduate Seminar I
The course prepares students to engage in activities necessary for independent mathematical research and introduces students to a broad range of active interdisciplinary programs related to applied mathematics. (This course is restricted to students in the ACMTH-MS or MATHML-PHD programs.) Lecture 2 (Fall).
1
MATH-607
Graduate Seminar II
This course is a continuation of Graduate Seminar I. It prepares students to engage in activities necessary for independent mathematical research and introduces them to a broad range of active interdisciplinary programs related to applied mathematics. (Prerequisite: MATH-606 or equivalent course or students in the ACMTH-MS or MATHML-PHD programs.) Lecture 2 (Spring).
1
 
Math Graduate Core Courses
6
 
Open Electives
9
 
General Education – Immersion 3
3
 
General Education – Elective
3
 
Program Elective
3
Fifth Year
MATH-790
Research & Thesis
Masters-level research by the candidate on an appropriate topic as arranged between the candidate and the research advisor. (This course is restricted to students in the ACMTH-MS or MATHML-PHD programs.) Thesis (Fall, Spring, Summer).
7
 
MATH Graduate Electives
12
Total Semester Credit Hours
146

Please see General Education Curriculum (GE) for more information.

(WI) Refers to a writing intensive course within the major.

Please see Wellness Education Requirement for more information. Students completing bachelor's degrees are required to complete two different Wellness courses.

‡ Students will satisfy this requirement by taking either a 3- or 4-credit hour lab science course. If a science course consists of separate lecture and laboratory sections, the student MUST take both the lecture and lab portions to satisfy the requirement. The lecture alone will not fulfill the requirement.

Computational Mathematics, BS degree/Applied and Computational Mathematics (project option), MS degree, typical course sequence

Course Sem. Cr. Hrs.
First Year
CSCI-141
General Education – Elective: Computer Science I
This course serves as an introduction to computational thinking using a problem-centered approach. Specific topics covered include: expression of algorithms in pseudo code and a programming language; functional and imperative programming techniques; control structures; problem solving using recursion; basic searching and sorting; elementary data structures such as lists, trees, and graphs; and correctness, testing and debugging. Assignments (both in class and for homework) requiring a pseudo code solution and an implementation are an integral part of the course. An end-of-term project is also required. Lec/Lab 6 (Fall, Spring).
4
CSCI-142
General Education – Elective: Computer Science II
This course delves further into problem solving by continuing the discussion of data structure use and design, but now from an object-oriented perspective. Key topics include more information on tree and graph structures, nested data structures, objects, classes, inheritance, interfaces, object-oriented collection class libraries for abstract data types (e.g. stacks, queues, maps, and trees), and static vs. dynamic data types. Concepts of object-oriented design are a large part of the course. Software qualities related to object orientation, namely cohesion, minimal coupling, modifiability, and extensibility, are all introduced in this course, as well as a few elementary object-oriented design patterns. Input and output streams, graphical user interfaces, and exception handling are covered. Students will also be introduced to a modern integrated software development environment (IDE). Programming projects will be required. (Prerequisites: CSCI-141 with a grade of C- or better or equivalent course.) Lec/Lab 6 (Fall, Spring, Summer).
4
MATH-181
General Education – Mathematical Perspective A: Project-Based Calculus I
This is the first in a two-course sequence intended for students majoring in mathematics, science, or engineering. It emphasizes the understanding of concepts, and using them to solve physical problems. The course covers functions, limits, continuity, the derivative, rules of differentiation, applications of the derivative, Riemann sums, definite integrals, and indefinite integrals. (Prerequisite: A- or better in MATH-111 or A- or better in ((NMTH-260 or NMTH-272 or NMTH-275) and NMTH-220) or a math placement exam score greater than or equal to 70 or department permission to enroll in this class.) Lecture 6 (Fall, Spring, Summer).
4
MATH-182
General Education – Mathematical Perspective B: Project-Based Calculus II
This is the second in a two-course sequence intended for students majoring in mathematics, science, or engineering. It emphasizes the understanding of concepts, and using them to solve physical problems. The course covers techniques of integration including integration by parts, partial fractions, improper integrals, applications of integration, representing functions by infinite series, convergence and divergence of series, parametric curves, and polar coordinates. (Prerequisites: C- or better in (MATH-181 or MATH-173 or 1016-282) or (MATH-171 and MATH-180) or equivalent course(s).) Lecture 6 (Fall, Spring, Summer).
4
MATH-199
Mathematics and Statistics Seminar
This course introduces the programs within the School of Mathematical Sciences, and provides an introduction to math and statistics software. The course provides practice in technical writing. Seminar 1 (Fall).
1
YOPS-10
RIT 365: RIT Connections
RIT 365 students participate in experiential learning opportunities designed to launch them into their career at RIT, support them in making multiple and varied connections across the university, and immerse them in processes of competency development. Students will plan for and reflect on their first-year experiences, receive feedback, and develop a personal plan for future action in order to develop foundational self-awareness and recognize broad-based professional competencies. Lecture 1 (Fall, Spring).
0
 
General Education – Artistic Perspective
3
 
General Education – Natural Science Inquiry Perspective‡
4
 
General Education – Elective
3
 
General Education – First-Year Writing (WI)
3
 
Open Elective
3
Second Year
CSCI-243
The Mechanics of Programming
Students will be introduced to the details of program structure and the mechanics of execution as well as supportive operating system features. Security and performance issues in program design will be discussed. The program translation process will be examined. Programming assignments will be required. (Prerequisites: (CSCI-140 or CSCI-142 or CSCI-242) with a grade of C- or better or equivalent course.) Lecture 3 (Fall, Spring, Summer).
3
CSCI-262
Introduction to Computer Science Theory
This course provides an introduction to the theory of computation, including formal languages, grammars, auto-mata theory, computability, and complexity. (Prerequisites: (MATH-190 or MATH-200 or 1016-366) and (CSCI-140 or CSCI-141 or CSCI-142 or CSCI-242 or 4003-242) or equivalent courses.) Lecture 3 (Fall, Spring, Summer).
3
MATH-200
Discrete Mathematics and Introduction to Proofs
This course prepares students for professions that use mathematics in daily practice, and for mathematics courses beyond the introductory level where it is essential to communicate effectively in the language of mathematics. It covers various methods of mathematical proof, starting with basic techniques in propositional and predicate calculus and set theory, and then moving to applications in advanced mathematics. (Prerequisite: MATH-173 or MATH-182 or MATH-182A or equivalent course.) Lecture 3, Recitation 4 (Fall).
3
MATH-231
Differential Equations
This course is an introduction to the study of ordinary differential equations and their applications. Topics include solutions to first order equations and linear second order equations, method of undetermined coefficients, variation of parameters, linear independence and the Wronskian, vibrating systems, and Laplace transforms. (Prerequisite: MATH-173 or MATH-182 or MATH-182A or equivalent course.) Lecture 3 (Fall, Spring, Summer).
3
MATH-251
Probability and Statistics I
This course introduces sample spaces and events, axioms of probability, counting techniques, conditional probability and independence, distributions of discrete and continuous random variables, joint distributions (discrete and continuous), the central limit theorem, descriptive statistics, interval estimation, and applications of probability and statistics to real-world problems. A statistical package such as Minitab or R is used for data analysis and statistical applications. (Prerequisites: MATH-173 or MATH-182 or MATH 182A or equivalent course.) Lecture 3 (Fall, Spring, Summer).
3
MATH-399
Mathematical Sciences Job Search Seminar
This course helps students prepare to search for co-op or full-time employment. Students will learn strategies for conducting a successful job search and transitioning into the work world. The course meets one hour each week for five weeks. Lecture 1 (Fall, Spring).
0
Choose one of the following:
4
   MATH-221
   General Education – Elective: Multivariable and Vector Calculus
This course is principally a study of the calculus of functions of two or more variables, but also includes a study of vectors, vector-valued functions and their derivatives. The course covers limits, partial derivatives, multiple integrals, Stokes' Theorem, Green's Theorem, the Divergence Theorem, and applications in physics. Credit cannot be granted for both this course and MATH-219. (Prerequisite: C- or better MATH-173 or MATH-182 or MATH-182A or equivalent course.) Lecture 4 (Fall, Spring, Summer).
 
   MATH-221H
   General Education – Elective: Honors Multivariable and Vector Calculus
 
Choose one of the following:
3
   MATH-241
   Linear Algebra
This course is an introduction to the basic concepts of linear algebra, and techniques of matrix manipulation. Topics include linear transformations, Gaussian elimination, matrix arithmetic, determinants, vector spaces, linear independence, basis, null space, row space, and column space of a matrix, eigenvalues, eigenvectors, change of basis, similarity and diagonalization. Various applications are studied throughout the course. (Prerequisites: MATH-190 or MATH-200 or MATH-219 or MATH-220 or MATH-221 or MATH-221H or equivalent course.) Lecture 3 (Fall, Spring).
 
   MATH-241H
   Honors Linear Algebra
 
 
General Education – Ethical Perspective
3
 
General Education – Global Perspective
3
 
General Education – Scientific Principles Perspective‡
4
Third Year
MATH-431
Real Variables I
This course is an investigation and extension of the theoretical aspects of elementary calculus. Topics include mathematical induction, real numbers, sequences, functions, limits, and continuity. The workshop will focus on helping students develop skill in writing proofs. (Prerequisites: (MATH-190 or MATH-200 or 1055-265) and (MATH-220 or MATH-221 or MATH-221H or 1016-410 or 1016-328) or equivalent courses.) Lec/Lab 4 (Fall, Spring).
3
MATH-441
Abstract Algebra I
This course covers basic set theory, number theory, groups, subgroups, cyclic and permutation groups, Lagrange and Sylow theorems, quotient groups, and isomorphism theorems. Group Theory finds applications in other scientific disciplines like physics and chemistry. (Prerequisites: (MATH-190 or MATH-200 or 1055-265) and MATH-241 or equivalent courses.) Lec/Lab 4 (Fall, Spring).
3
 
Program Electives
12
 
General Education – Social Perspective
3
 
General Education – Immersion 1, 2
6
 
General Education – Elective
3
Fourth Year
MATH-421
Mathematical Modeling (WI-PR)
This course explores problem solving, formulation of the mathematical model from physical considerations, solution of the mathematical problem, testing the model and interpretation of results. Problems are selected from the physical sciences, engineering, and economics. (Prerequisites: (MATH-220 or MATH-221 or 1016-410 or 1016-328) and MATH-231 and MATH-241 and MATH-251 or equivalent courses.) Lecture 3 (Fall).
3
MATH-602
Numerical Analysis I
This course covers numerical techniques for the solution of nonlinear equations, interpolation, differentiation, integration, and matrix algebra. (Prerequisites: (MATH-241 and MATH-431) or equivalent courses or graduate standing in ACMTH-MS or MATHML-PHD programs.) Lecture 3 (Fall).
3
MATH-606
Graduate Seminar I
The course prepares students to engage in activities necessary for independent mathematical research and introduces students to a broad range of active interdisciplinary programs related to applied mathematics. (This course is restricted to students in the ACMTH-MS or MATHML-PHD programs.) Lecture 2 (Fall).
1
MATH-607
Graduate Seminar II
This course is a continuation of Graduate Seminar I. It prepares students to engage in activities necessary for independent mathematical research and introduces them to a broad range of active interdisciplinary programs related to applied mathematics. (Prerequisite: MATH-606 or equivalent course or students in the ACMTH-MS or MATHML-PHD programs.) Lecture 2 (Spring).
1
 
Math Graduate Core Courses
6
 
Open Electives
9
 
General Education – Immersion 3
3
 
General Education – Elective
3
 
Program Elective
3
Fifth Year
MATH-790
Research & Thesis
Masters-level research by the candidate on an appropriate topic as arranged between the candidate and the research advisor. (This course is restricted to students in the ACMTH-MS or MATHML-PHD programs.) Thesis (Fall, Spring, Summer).
4
 
MATH Graduate Electives
15
Total Semester Credit Hours
146

Please see General Education Curriculum (GE) for more information.

(WI) Refers to a writing intensive course within the major.

Please see Wellness Education Requirement for more information. Students completing bachelor's degrees are required to complete two different Wellness courses.

‡ Students will satisfy this requirement by taking either a 3- or 4-credit hour lab science course. If a science course consists of separate lecture and laboratory sections, the student MUST take both the lecture and lab portions to satisfy the requirement. The lecture alone will not fulfill the requirement.

Computational Mathematics, BS degree/Computer Science, MS degree, typical course sequence

Course Sem. Cr. Hrs.
First Year
CSCI-141
General Education – Elective: Computer Science I
This course serves as an introduction to computational thinking using a problem-centered approach. Specific topics covered include: expression of algorithms in pseudo code and a programming language; functional and imperative programming techniques; control structures; problem solving using recursion; basic searching and sorting; elementary data structures such as lists, trees, and graphs; and correctness, testing and debugging. Assignments (both in class and for homework) requiring a pseudo code solution and an implementation are an integral part of the course. An end-of-term project is also required. Lec/Lab 6 (Fall, Spring).
4
CSCI-142
General Education – Elective: Computer Science II
This course delves further into problem solving by continuing the discussion of data structure use and design, but now from an object-oriented perspective. Key topics include more information on tree and graph structures, nested data structures, objects, classes, inheritance, interfaces, object-oriented collection class libraries for abstract data types (e.g. stacks, queues, maps, and trees), and static vs. dynamic data types. Concepts of object-oriented design are a large part of the course. Software qualities related to object orientation, namely cohesion, minimal coupling, modifiability, and extensibility, are all introduced in this course, as well as a few elementary object-oriented design patterns. Input and output streams, graphical user interfaces, and exception handling are covered. Students will also be introduced to a modern integrated software development environment (IDE). Programming projects will be required. (Prerequisites: CSCI-141 with a grade of C- or better or equivalent course.) Lec/Lab 6 (Fall, Spring, Summer).
4
MATH-181
General Education – Mathematical Perspective A: Project-Based Calculus I
This is the first in a two-course sequence intended for students majoring in mathematics, science, or engineering. It emphasizes the understanding of concepts, and using them to solve physical problems. The course covers functions, limits, continuity, the derivative, rules of differentiation, applications of the derivative, Riemann sums, definite integrals, and indefinite integrals. (Prerequisite: A- or better in MATH-111 or A- or better in ((NMTH-260 or NMTH-272 or NMTH-275) and NMTH-220) or a math placement exam score greater than or equal to 70 or department permission to enroll in this class.) Lecture 6 (Fall, Spring, Summer).
4
MATH-182
General Education – Mathematical Perspective B: Project-Based Calculus II
This is the second in a two-course sequence intended for students majoring in mathematics, science, or engineering. It emphasizes the understanding of concepts, and using them to solve physical problems. The course covers techniques of integration including integration by parts, partial fractions, improper integrals, applications of integration, representing functions by infinite series, convergence and divergence of series, parametric curves, and polar coordinates. (Prerequisites: C- or better in (MATH-181 or MATH-173 or 1016-282) or (MATH-171 and MATH-180) or equivalent course(s).) Lecture 6 (Fall, Spring, Summer).
4
MATH-199
Mathematics and Statistics Seminar
This course introduces the programs within the School of Mathematical Sciences, and provides an introduction to math and statistics software. The course provides practice in technical writing. Seminar 1 (Fall).
1
YOPS-10
RIT 365: RIT Connections
RIT 365 students participate in experiential learning opportunities designed to launch them into their career at RIT, support them in making multiple and varied connections across the university, and immerse them in processes of competency development. Students will plan for and reflect on their first-year experiences, receive feedback, and develop a personal plan for future action in order to develop foundational self-awareness and recognize broad-based professional competencies. Lecture 1 (Fall, Spring).
0
 
General Education – Artistic Perspective
3
 
General Education – Natural Science Inquiry Perspective
4
 
General Education – Elective
3
 
General Education – First-Year Writing (WI)
3
Second Year
CSCI-243
The Mechanics of Programming
Students will be introduced to the details of program structure and the mechanics of execution as well as supportive operating system features. Security and performance issues in program design will be discussed. The program translation process will be examined. Programming assignments will be required. (Prerequisites: (CSCI-140 or CSCI-142 or CSCI-242) with a grade of C- or better or equivalent course.) Lecture 3 (Fall, Spring, Summer).
3
CSCI-262
Introduction to Computer Science Theory
This course provides an introduction to the theory of computation, including formal languages, grammars, auto-mata theory, computability, and complexity. (Prerequisites: (MATH-190 or MATH-200 or 1016-366) and (CSCI-140 or CSCI-141 or CSCI-142 or CSCI-242 or 4003-242) or equivalent courses.) Lecture 3 (Fall, Spring, Summer).
3
MATH-200
Discrete Mathematics and Introduction to Proofs
This course prepares students for professions that use mathematics in daily practice, and for mathematics courses beyond the introductory level where it is essential to communicate effectively in the language of mathematics. It covers various methods of mathematical proof, starting with basic techniques in propositional and predicate calculus and set theory, and then moving to applications in advanced mathematics. (Prerequisite: MATH-173 or MATH-182 or MATH-182A or equivalent course.) Lecture 3, Recitation 4 (Fall).
3
MATH-231
Differential Equations
This course is an introduction to the study of ordinary differential equations and their applications. Topics include solutions to first order equations and linear second order equations, method of undetermined coefficients, variation of parameters, linear independence and the Wronskian, vibrating systems, and Laplace transforms. (Prerequisite: MATH-173 or MATH-182 or MATH-182A or equivalent course.) Lecture 3 (Fall, Spring, Summer).
3
MATH-251
Probability and Statistics I
This course introduces sample spaces and events, axioms of probability, counting techniques, conditional probability and independence, distributions of discrete and continuous random variables, joint distributions (discrete and continuous), the central limit theorem, descriptive statistics, interval estimation, and applications of probability and statistics to real-world problems. A statistical package such as Minitab or R is used for data analysis and statistical applications. (Prerequisites: MATH-173 or MATH-182 or MATH 182A or equivalent course.) Lecture 3 (Fall, Spring, Summer).
3
MATH-399
Mathematical Sciences Job Search Seminar
This course helps students prepare to search for co-op or full-time employment. Students will learn strategies for conducting a successful job search and transitioning into the work world. The course meets one hour each week for five weeks. Lecture 1 (Fall, Spring).
0
Choose one of the following:
4
   MATH-221
   General Education – Elective: Multivariable and Vector Calculus
This course is principally a study of the calculus of functions of two or more variables, but also includes a study of vectors, vector-valued functions and their derivatives. The course covers limits, partial derivatives, multiple integrals, Stokes' Theorem, Green's Theorem, the Divergence Theorem, and applications in physics. Credit cannot be granted for both this course and MATH-219. (Prerequisite: C- or better MATH-173 or MATH-182 or MATH-182A or equivalent course.) Lecture 4 (Fall, Spring, Summer).
 
   MATH-221H
   General Education – Elective: Honors Multivariable and Vector Calculus
 
Choose one of the following:
3
   MATH-241
   Linear Algebra
This course is an introduction to the basic concepts of linear algebra, and techniques of matrix manipulation. Topics include linear transformations, Gaussian elimination, matrix arithmetic, determinants, vector spaces, linear independence, basis, null space, row space, and column space of a matrix, eigenvalues, eigenvectors, change of basis, similarity and diagonalization. Various applications are studied throughout the course. (Prerequisites: MATH-190 or MATH-200 or MATH-219 or MATH-220 or MATH-221 or MATH-221H or equivalent course.) Lecture 3 (Fall, Spring).
 
   MATH-241H
   Honors Linear Algebra
 
 
General Education – Ethical Perspective
3
 
General Education – Global Perspective
3
 
General Education – Scientific Principles Perspective
4
Third Year
MATH-411
Numerical Analysis
This course covers numerical techniques for the solution of nonlinear equations, interpolation, differentiation, integration, and the solution of initial value problems. (Prerequisites: (MATH-231 and MATH-241) or MATH-233 or equivalent courses.) Lecture 3 (Fall).
3
MATH-431
Real Variables I
This course is an investigation and extension of the theoretical aspects of elementary calculus. Topics include mathematical induction, real numbers, sequences, functions, limits, and continuity. The workshop will focus on helping students develop skill in writing proofs. (Prerequisites: (MATH-190 or MATH-200 or 1055-265) and (MATH-220 or MATH-221 or MATH-221H or 1016-410 or 1016-328) or equivalent courses.) Lec/Lab 4 (Fall, Spring).
3
 
Program Electives
12
 
General Education – Social Perspective
3
 
General Education – Immersion 1
3
 
General Education – Elective
3
 
Open Elective
3
Fourth Year
CSCI-664
Computational Complexity
This course provides an introduction to computational complexity theory. It covers the P=NP problem, time and space complexity, randomization, approximability, and relativization. Course offered every other year. (Prerequisites: (CSCI-661 or CSCI-660 or CSCI-262 or CSCI-263) and (CSCI-665 or CSCI-261 or CSCI-264) or equivalent courses.) Lecture 3 (Spring).
3
CSCI-665
Foundations of Algorithms
This course provides an introduction to the design and analysis of algorithms. It covers a variety of classical algorithms and their complexity and will equip students with the intellectual tools to design, analyze, implement, and evaluate their own algorithms. Note: students who take CSCI-261 or CSCI-264 may not take CSCI-665 for credit. (Prerequisites: (CSCI-603 and CSCI-605 and CSCI-661 with grades of B or better) or ((CSCI-243 or SWEN-262) and (CSCI-262 or CSCI-263)) or equivalent courses. This course is restricted to COMPSCI-MS, COMPSCI-BS/MS, or COMPIS-PHD students.) Lec/Lab 3 (Fall, Spring).
3
MATH-421
Mathematical Modeling (WI-PR)
This course explores problem solving, formulation of the mathematical model from physical considerations, solution of the mathematical problem, testing the model and interpretation of results. Problems are selected from the physical sciences, engineering, and economics. (Prerequisites: (MATH-220 or MATH-221 or 1016-410 or 1016-328) and MATH-231 and MATH-241 and MATH-251 or equivalent courses.) Lecture 3 (Fall).
3
MATH-441
Abstract Algebra I
This course covers basic set theory, number theory, groups, subgroups, cyclic and permutation groups, Lagrange and Sylow theorems, quotient groups, and isomorphism theorems. Group Theory finds applications in other scientific disciplines like physics and chemistry. (Prerequisites: (MATH-190 or MATH-200 or 1055-265) and MATH-241 or equivalent courses.) Lec/Lab 4 (Fall, Spring).
3
 
Open Electives
9
 
General Education – Immersion 2, 3
6
 
General Education – Elective
3
Fifth Year
CSCI-610
Fundamentals of Computer Graphics
Foundations of Computer Graphics is a study of the hardware and software principles of interactive raster graphics. Topics include an introduction to the basic concepts, 2-D and 3-D modeling and transformations, viewing transformations, projections, rendering techniques, graphical software packages and graphics systems. The course will focus on rasterization techniques and emphasize the hardware rasterization pipeline including the use of hardware shaders. Students will use a standard computer graphics API to reinforce concepts and study fundamental computer graphics algorithms. Programming projects and a survey of the current graphics literature will be required. Note: students who complete CSCI-510 may not take CSCI-610 for credit. (Prerequisite: (CSCI-603 or CSCI-605 with a grade of B or better) or (CSCI-243 or SWEN-262). May not take and receive credit for CSCI-610 and CSCI-510. If earned credit for/or currently enrolled in CSCI-510 you will not be permitted to enroll in CSCI-610.) Lecture 3 (Fall, Spring).
3
CSCI-630
Foundations of Artificial Intelligence
3
CSCI-631
Foundations of Computer Vision
An introduction to the underlying concepts of computer vision and image understanding. The course will consider fundamental topics, including image formation, edge detection, texture analysis, color, segmentation, shape analysis, detection of objects in images and high level image representation. Depending on the interest of the class, more advanced topics will be covered, such as image database retrieval or robotic vision. Programming assignments are an integral part of the course. Note: students who complete CSCI-431 may not take CSCI-631 for credit. (Prerequisites:(CSCI-603 and CSCI-605 and CSCI-661 with grades of B or better) or ((CSCI-243 or SWEN-262) and (CSCI-262 or CSCI-263)) or equiv courses. If earned credit for/or currently enrolled in CSCI-431 you will not be permitted to enroll in CSCI-631.Prerequisites:(CSCI-603 and CSCI-605 and CSCI-661 with grades of B or better) or ((CSCI-243 or SWEN-262) and (CSCI-262 or CSCI-263)) or equiv courses. If earned credit for/or currently enrolled in CSCI-431 you will not be permitted to enroll in CSCI-631.) Lecture 3 (Fall, Spring).
3
CSCI-635
Introduction to Machine Learning
This course offers an introduction to supervised machine learning theories and algorithms, and their application to classification and regression tasks. Topics include: Mathematical background of machine learning (e.g. statistical analysis and visualization of data), neural models (e.g. Convolutional Neural Networks, Recurrent Neural Networks), probabilistic graphical models (e.g. Bayesian networks, Markov models), and reinforcement learning. Programming assignments are required. (Prerequisites: CSCI-331 or CSCI-630 or equivalent course.) Lecture 3 (Fall, Spring).
3
CSCI-790
Computer Science MS Thesis
Thesis capstone of the master's degree program. Student must submit an acceptable thesis proposal in order to enroll. It is expected that the work would lead to a paper of the caliber of those generally acceptable to a national conference. (Enrollment in this course requires permission from the department offering the course.) Thesis (Fall, Spring, Summer).
6
CSCI-799
Computer Science Graduate Independent Study
Students work with a supervising faculty member on topics of mutual interest. A student works with a potential faculty sponsor to draft a proposal that describes what a student plans to do, what deliverables are expected, how the student's work will be evaluated, and how much credit will be assigned for successful completion of the work. The faculty sponsor proposes the grade, but before the grade is officially recorded, the student must submit a final report that summarizes what was actually accomplished. (Enrollment in this course requires permission from the department offering the course.) Ind Study (Fall, Spring, Summer).
6
Total Semester Credit Hours
146

Admission Requirements

Freshman Admission

For all bachelor’s degree programs, a strong performance in a college preparatory program is expected. Generally, this includes 4 years of English, 3-4 years of mathematics, 2-3 years of science, and 3 years of social studies and/or history.

Specific math and science requirements and other recommendations

  • 3 years of math required; pre-calculus recommended

Transfer Admission

Transfer course recommendations without associate degree

Courses in liberal arts, physics, math, and chemistry

Appropriate associate degree programs for transfer

AS degree in liberal arts with math/science option

Learn about admissions, cost, and financial aid 

Latest News

  • June 23, 2020

    screenshot of program that searches math formulas.

    RIT researchers create easy-to-use math-aware search interface

    Researchers at RIT have developed MathDeck, an online search interface that allows anyone to easily create, edit and lookup sophisticated math formulas on the computer. Created by an interdisciplinary team of more than a dozen faculty and students, MathDeck aims to make math notation interactive and easily shareable, and it's is free and open to the public.

  • February 4, 2020

    photo of Reid Kamhi

    Student to Student: Internship experience

    Getting internships wasn't always easy, but Reid Kamhi never gave up. He knew the importance of adding project experience to his resume. In this spotlight, he shares his story and offers tips to other RIT students looking for internship opportunities.