Astrophysical Sciences and Technology Master of Science Degree

A master’s in astrophysics that explores the depths of the universe through multidisciplinary research. Dive into an area that most interests you, whether it’s general relativity, theoretical astrophysics, observational or instrumentation development, or another area related to astrophysics.


100%

Outcome Rate of RIT Graduates from this degree

30%

Merit scholarship

Average award given to accepted students

Overview for Astrophysical Sciences and Technology MS

The degree in astrophysics focuses on the underlying physics of phenomena beyond the Earth, and on the development of the technologies, instruments, data analysis, and modeling techniques that will enable the next major strides in the field.

There has never been a more exciting time to obtain an astronomy degree and study the universe beyond the confines of the Earth. A new generation of advanced ground-based and space-borne telescopes and enormous increases in computing power are enabling a golden age of astrophysics. RIT’s astronomy degree has a multidisciplinary emphasis that sets it apart from conventional astrophysics graduate programs at traditional research universities.

RIT’s Master’s in Astrophysics

RIT’s master’s in astrophysics offers students a wide range of frontier research topics in areas including multi-wavelength astrophysics, instrumentation and detector technology, computational astrophysics and gravitational wave astronomy and numerical relativity. Our guiding principle is to provide an intellectually demanding program within an informal, student-centered and supportive environment.

At RIT, you have the flexibility to tailor your plan of study to emphasize astrophysics (including observational and theoretical astrophysics),computational and gravitational astrophysics (including numerical relativity, gravitational wave astronomy), or astronomical technology (including detector and instrumentation research and development).

Pursure research interests in a wide range of topics, including design and development of novel detectors, multiwavelength studies of proto-stars, active galactic nuclei and galaxy clusters, gravitational wave data analysis, and theoretical and computational modeling of astrophysical systems including galaxies and compact objects such as binary black holes.

RIT’s astrophysics research areas include:

  • Computational general relativity
  • Gravitational wave astronomy
  • Multi-messenger astrophysics
  • Time domain astrophysics
  • Experimental cosmology
  • Supermassive black holes
  • Active galaxie, galaxy evolution and galaxy clusters
  • Proto-stars and proto-planetary disks
  • Planetary nebulae
  • Binary stars
  • Stellar evolution
  • Sub-orbital Astrophysics
  • Next generation infrared detectors
  • Zero read-noise detectors

Depending on research interests, you may participate in one of three research centers at RIT: the Center for Computational Relativity and Gravitation (Video), the Center for Detectors or the Laboratory for Multi-wavelength Astrophysics.

Master’s in Astrophysics Degree: What You’ll Study

A degree in astrophysics at RIT consists of four core courses, two to four elective courses, two semesters of graduate seminar, and a research project culminating in a thesis.

During the first year, you will begin a research project under the guidance of a faculty research advisor. Focus on the project becomes more significant during the second year after the core courses have been completed. A thesis committee is appointed by the program director and oversees the final defense of the thesis, which consists of a public oral presentation by the student, followed by a closed-door examination by the committee.

Careers for Master’s in Astrophysics

Alumni of our programs most often work in research positions or education programs ranging from K-12 to higher education. Alumni also are successful in computing, information technology, federal government, and imaging technology.

As a standalone research degree, the MS is a qualification for positions in data analysis or an entry into numerous other careers ranging from education to federal government. The MS also provides a stepping stone to a Ph.D.

MS to Ph.D. Transfer

For those who want to pursue a career in research, the Ph.D. provides an essential qualification. It opens the door to positions such as a university professor or staff scientist in institutions such as NASA, and to many other careers in STEM requiring analytical capabilities.

Students in the MS degree program who have excelled in their course work and research project may be permitted, by program approval, to transition into the doctoral degree in astrophysical sciences and technology, with the MS thesis defense serving as the Ph.D. qualifying examination. Such a transition from MS to Ph.D. is contingent on the availability of an advisor and research funding.


Students are also interested in: Astrophysical Sciences and Technology Ph.D., Physics MS

Loading...

Careers and Experiential Learning

Typical Job Titles

Optics Technology Supervisor Planetarium Director
Data Analyst

Cooperative Education

What makes an RIT science and math education exceptional? It’s the ability to complete science and math co-ops and gain real-world experience that sets you apart. Co-ops in the College of Science include cooperative education and internship experiences in industry and health care settings, as well as research in an academic, industry, or national lab. These are not only possible at RIT, but are passionately encouraged.

What makes an RIT education exceptional? It’s the ability to complete relevant, hands-on career experience. At the graduate level, and paired with an advanced degree, cooperative education and internships give you the unparalleled credentials that truly set you apart. Learn more about graduate co-op and how it provides you with the career experience employers look for in their next top hires.

National Labs Career Events and Recruiting

The Office of Career Services and Cooperative Education offers National Labs and federally-funded Research Centers from all research areas and sponsoring agencies a variety of options to connect with and recruit students. Students connect with employer partners to gather information on their laboratories and explore co-op, internship, research, and full-time opportunities.  These national labs focus on scientific discovery, clean energy development, national security, technology advancements, and more. Recruiting events include our university-wide Fall Career Fair, on-campus and virtual interviews, information sessions,  1:1 networking with lab representatives, and a National Labs Resume Book available to all labs.

Featured Work

Featured Profiles

Curriculum for 2023-2024 for Astrophysical Sciences and Technology MS

Current Students: See Curriculum Requirements

Astrophysical Sciences and Technology, MS degree, typical course sequence

Course Sem. Cr. Hrs.
First Year
ASTP-601
Graduate Seminar I
This course is the first in a two-semester sequence intended to familiarize students with research activities, practices, and ethics in the university research environment and to introduce students to commonly used research tools. As part of the course, students are expected to attend research seminars sponsored by the Astrophysical Sciences and Technology Program and participate in a weekly journal club. The course also provides training in scientific writing and presentation skills. Credits earned in this course apply to research requirements. (Prerequisites: This course is restricted to students in the ASTP-MS and ASTP-PHD programs.) Seminar 3 (Fall).
1
ASTP-602
Graduate Seminar II
This course is the second in a two-semester sequence intended to familiarize students with research activities, practices, and ethics in the university research environment and to introduce students to commonly used research tools. As part of the course, students are expected to attend research seminars sponsored by the Astrophysical Sciences and Technology Program and participate in a weekly journal club. The course also provides training in scientific writing and presentation skills. Credits earned in this course apply to research requirements. (Prerequisites: ASTP-601 or equivalent course. This course is restricted to students in the ASTP-MS and ASTP-PHD programs.) Seminar 3 (Spring).
1
ASTP-608
Fundamental Astrophysics I
This course will provide a basic introduction to modern astrophysics, including the topics of radiation fields and matter, star formation and evolution, and stellar structure. This course will provide the physical background needed to interpret both observations and theoretical models in stellar astrophysics and prepare students for more advanced topics and research in astrophysics. (Prerequisites: This course is restricted to students in the ASTP-MS and ASTP-PHD programs.) Lecture 3 (Fall).
3
ASTP-609
Fundamental Astrophysics II
This course will provide a basic introduction to modern astrophysics, following on from Fundamental Astrophysics I. Topics will include basic celestial mechanics and galactic dynamics, the Milky Way and other galaxies, the interstellar medium, active galactic nuclei, galaxy formation and evolution, and an introduction to cosmology. This course will provide the physical background needed to interpret both observations and theoretical models in galactic and extragalactic astrophysics and cosmology and prepare students for more advanced topics and research in astrophysics. (Prerequisites: ASTP-608 or equivalent course.) Lecture 3 (Spring).
3
ASTP-790
Research & Thesis
Masters-level research by the candidate on an appropriate topic as arranged between the candidate and the research advisor. (Enrollment in this course requires permission from the department offering the course.) Thesis (Fall, Spring, Summer).
4
 
Approved Graduate Electives
6
Second Year
 
Approved Graduate Electives
6
ASTP-790
Research & Thesis
Masters-level research by the candidate on an appropriate topic as arranged between the candidate and the research advisor. (Enrollment in this course requires permission from the department offering the course.) Thesis (Fall, Spring, Summer).
2
Choose one of the following:
4
   
   Approved Graduate Electives
  
   ASTP-790
   Research & Thesis
Masters-level research by the candidate on an appropriate topic as arranged between the candidate and the research advisor. (Enrollment in this course requires permission from the department offering the course.) Thesis (Fall, Spring, Summer).
 
Total Semester Credit Hours
30

Electives

Course
ASTP-612
Mathematical and Statistical Methods for Astrophysics
This course provides an introduction to the applied mathematical and statistical tools used frequently in astrophysics including modeling, data reduction, analysis, and computational astrophysics. Topics will include Special Functions, Differential Equations, Probability and Statistics, and Frequency Domain Analysis. (Prerequisites: This course is restricted to students in the ASTP-MS and ASTP-PHD programs.) Lecture 3 (Spring).
ASTP-613
Astronomical Observational Techniques and Instrumentation
This course will survey multi-wavelength astronomical observing techniques and instrumentation. The design characteristics and function of telescopes, detectors, and instrumentation in use at the major ground based and space based observatories will be discussed as will common observing techniques such as imaging, photometry and spectroscopy. The principles of cosmic ray, neutrino, and gravitational wave astronomy will also be briefly reviewed. (Prerequisites: This course is restricted to students in the ASTP-MS and ASTP-PHD programs.) Lecture 3 (Fall).
ASTP-618
Fundamentals of Theoretical Astrophysics I
This course will provide students with an in-depth theoretical background on those astrophysical phenomena where matter and electromagnetic fields play a major role. This includes stellar cores, relativistic plasmas, accretion physics, and jet production. Topics will include elements of electromagnetism, classical and relativistic fluids, magnetohydrodynamics, and radiation. (Prerequisites: ASTP-608 or equivalent course.) Lecture 3 (Fall).
ASTP-619
Fundamentals of Theoretical Astrophysics II
This course will provide students with the in-depth background on Classical, Statistical, and Nuclear physics required for modeling many astrophysical systems. Particular attention is paid to topics related to the physics of stellar remnants (e.g., white dwarfs, neutron stars, and black holes) and the physics of compact object mergers. (Prerequisites: ASTP-608 and ASTP-618 or equivalent course.) Lecture 3 (Spring).
ASTP-660
Introduction to Relativity and Gravitation
This course is the first in a two-course sequence that introduces Einstein’s theory of General Relativity as a tool in modern astrophysics. The course will cover various aspects of both Special and General Relativity, with applications to situations in which strong gravitational fields play a critical role, such as black holes and gravitational radiation. Topics include differential geometry, curved spacetime, gravitational waves, and the Schwarzschild black hole. The target audience is graduate students in the astrophysics, physics, and mathematical modeling (geometry and gravitation) programs. (This course is restricted to students in the ASTP-MS, ASTP-PHD, MATHML-PHD and PHYS-MS programs.) Lecture 3 (Fall).
ASTP-711
Advanced Statistical Methods for Astrophysics
This is an advanced course in statistical inference and data analysis for the astrophysical sciences. Topics include Bayesian and frequentist methods of parameter estimation, model selection and evaluation using astrophysical data. Specific applications, such parameter estimation from gravitational wave signals, or analysis of large data sets from imaging, spectroscopic or time domain surveys will be discussed. Computational methods including Markov Chain Monte Carlo, with other topics such as machine learning, and time series analysis included at the discretion of the instructor. (Prerequisite: ASTP-610 or equivalent course.) Lecture 3 (Fall).
ASTP-720
Computational Methods for Astrophysics
This course surveys the different ways that scientists use computers to address problems in astrophysics. The course will choose several common problems in astrophysics; for each one, it will provide an introduction to the problem, review the literature for recent examples, and illustrate the basic mathematical technique. In each of these segments, students will write their own code in an appropriate language. (Prerequisites: This course is restricted to students in the ASTP-MS and ASTP-PHD programs.) Lecture 3 (Fall).
ASTP-730
Stellar Atmospheres & Evolution
An overview of the physical principles and observational phenomenology describing stellar atmospheres and stellar evolution. Topics covered include: atmospheric temperature structure and line formation; atmosphere models and spectral type determination; observational (spectral) diagnostics of stellar masses, abundances, ages and evolutionary states; and a survey of contemporary topics in star formation and pre- and post-main sequence stellar evolution, with emphasis on the physical processes governing stellar accretion, mass loss, and the effects of binary companions on these processes. (Prerequisites: ASTP-608 or equivalent course.) Lecture 3 (Spring).
ASTP-740
Galactic Astrophysics
This course surveys our current knowledge of the Milky Way galaxy, and the processes that shape its structure and evolution. Topics will include the structure and kinematics of the Milky Way; stellar populations; theory of orbits; Jean’s theorem and equilibrium of stellar systems; the virial theorem; the Jean’s equations; gravitational instabilities; tidal interactions; the central black hole; the Local Group and chemical evolution. (Prerequisite: ASTP-609 or equivalent course.) Lecture 3 (Fall).
ASTP-750
Extragalactic Astrophysics
This course will cover objects in the universe beyond our own Milky Way galaxy, with an emphasis on the observational evidence. Topics will include properties of ordinary and active galaxies; galaxy clusters; the extragalactic distance scale; evidence for dark matter; cosmological models with and without the cosmological constant (Lambda). (Prerequisite: ASTP-609 or equivalent course.) Lecture 3 (Spring).
ASTP-835
High-Energy Astrophysics
This course will survey violent astrophysical phenomena including supernovae, compact stellar remnants, X-ray binaries, gamma ray bursts, and supermassive black holes in active galactic nuclei. It will examine physical processes associated with the emission of high-energy radiation, production of high-energy particles, accretion discs around compact objects, and production and propagation of astrophysical jets. It will review current models for the sources of high-energy phenomena. (Prerequisite: ASTP-609 or equivalent course.) Lecture 3 (Spring).
ASTP-841
The Interstellar Medium
This course provides a detailed overview of the physical processes and properties of the interstellar medium in our Galaxy and other galaxies. The course explores the fundamental physical basis of the observed properties of low-density astrophysical gases observed throughout the universe. Topics may include HII regions, planetary nebulae, HI clouds, molecular clouds, photodissociation regions, supernova remnants, and multi-phase models of the interstellar medium. (Prerequisite: ASTP-609 or equivalent course.) Lecture 3 (Fall).
ASTP-851
Cosmology
This course will cover the evolution of the universe from the big bang to the present, with an emphasis on the synergy between theory and observations. Topics will fall under three general headings: classical and relativistic cosmology, the early universe, and structure formation. (Prerequisite: ASTP-609 or equivalent course.) Lecture 3 (Spring).
ASTP-861
Advanced Relativity and Gravitation
This course is the second in a two-course sequence that introduces Einstein’s theory of General Relativity as a tool in modern astrophysics. The course will cover various aspects of General Relativity, with applications to situations in which strong gravitational fields play a critical role, such as black holes and gravitational radiation. Topics include advanced differential geometry, generic black holes, energy production in black-hole physics, black-hole dynamics, neutron stars, and methods for solving the Einstein equations. The target audience is graduate students in the astrophysics, physics, and mathematical modeling (geometry and gravitation) programs. (Prerequisite: ASTP-660 or equivalent course.) Lecture 3 (Spring).
EEEE-610
Analog Electronics Design
This is a foundation course in analog integrated electronic circuit design and is a perquisite for the graduate courses in analog integrated circuit design EEEE-726 and EEEE-730. The course covers the following topics: (1)CMOS Technology (2) CMOS active and passive element models (3) Noise mechanisms and circuit noise analysis (4) Current mirrors (5) Differential amplifiers, cascade amplifiers (6) Multistage amps and common mode feedback (7) Stability analysis of feedback amplifiers; (8) Advanced current mirrors, amplifiers, and comparators (9) Band gap and translinear cells (10) Matching. (Prerequisites: EEEE-480 or equivalent course or graduate standing in EEEE-MS.) Lecture 3 (Fall).
IMGS-628
Design and Fabrication of Solid State Cameras
The purpose of this course is to provide the student with hands-on experience in building a CCD camera. The course provides the basics of CCD operation including an overview, CCD clocking, analog output circuitry, cooling, and evaluation criteria. (This course is restricted to students with graduate standing in the College of Science or the Kate Gleason College of Engineering or Graduate Computing and Information Sciences.) Lab 6, Lecture 1 (Fall).
IMGS-639
Principles of Solid State Imaging Arrays
This course covers the basics of solid state physics, electrical engineering, linear systems and imaging needed to understand modern focal plane array design and use. The course emphasizes knowledge of the working of CMOS and infrared arrays. (This course is restricted to students with graduate standing in the College of Science or the Kate Gleason College of Engineering or Graduate Computing and Information Sciences.) Lecture 3 (Fall).
IMGS-642
Testing of Focal Plane Arrays
This course is an introduction to the techniques used for the testing of solid state imaging detectors such as CCDs, CMOS and Infrared Arrays. Focal plane array users in industry, government and university need to ensure that key operating parameters for such devices either fall within an operating range or that the limitation to the performance is understood. This is a hands-on course where the students will measure the performance parameters of a particular camera in detail. (This course is restricted to students with graduate standing in the College of Science or the Kate Gleason College of Engineering or Graduate Computing and Information Sciences.) Lab 6, Lecture 1 (Spring).
MATH-602
Numerical Analysis
This course covers numerical techniques for the solution of nonlinear equations, interpolation, differentiation, integration, and matrix algebra. (Prerequisites: MATH-411 or equivalent course and graduate standing.) Lecture 3 (Fall).
MATH-751
High-performance Computing for Mathematical Modeling
Students in this course will study high-performance computing as a tool for solving problems related to mathematical modeling. Two primary objectives will be to gain experience in understanding the advantages and limitations of different hardware and software options for a diverse array of modeling approaches and to develop a library of example codes. The course will include extensive hands-on computational (programming) assignments. Students will be expected to have a prior understanding of basic techniques for solving mathematical problems numerically. (Prerequisite: MATH-602 or equivalent course.) Lecture 3 (Spring).
MATH-751
High Performance Computing
Students in this course will study high-performance computing as a tool for solving problems related to mathematical modeling. Two primary objectives will be to gain experience in understanding the advantages and limitations of different hardware and software options for a diverse array of modeling approaches and to develop a library of example codes. The course will include extensive hands-on computational (programming) assignments. Students will be expected to have a prior understanding of basic techniques for solving mathematical problems numerically. (Prerequisite: MATH-602 or equivalent course.) Lecture 3 (Spring).
PHYS-611
Classical Electrodynamics I
This course is a systematic treatment of electro- and magneto-statics, charges, currents, fields and potentials, dielectrics and magnetic materials, Maxwell's equations and electromagnetic waves. Field theory is treated in terms of scalar and vector potentials. Wave solutions of Maxwell's equations, the behavior of electromagnetic waves at interfaces, guided electromagnetic waves, and simple radiating systems will be covered. (Prerequisites: PHYS-412 or equivalent course or Graduate standing.) Lecture 3 (Fall).
PHYS-612
Classical Electrodynamics II
This course is an advanced treatment of electrodynamics and radiation. Classical scattering theory including Mie scattering, Rayleigh scattering, and the Born approximation will be covered. Relativistic electrodynamics will be applied to charged particles in electromagnetic fields and magnetohydrodynamics. (Prerequisites: PHYS-611 or equivalent course.) Lecture 3 (Spring).
PHYS-614
Quantum Theory
This course is a graduate level introduction to the modern formulation of quantum mechanics. Topics include Hilbert space, Dirac notation, quantum dynamics, Feynman’s formulation, representation theory, angular momentum, identical particles, approximation methods including time-independent and time-dependent perturbation theory. The course will emphasize the underlying algebraic structure of the theory with an emphasis on current applications. (Prerequisites: This course is restricted to students in the PHYS-MS, ASTP-MS and ASTP-PHD programs.) Lecture 3 (Fall).
PHYS-616
Data Analysis for the Physical Sciences
This course is an introductory graduate-level overview of techniques in and applications of data analysis in physics and related fields. Topics examined include noise and probability, model fitting and hypothesis testing, signal processing, Fourier methods, and advanced computation and simulation techniques. Applications are drawn from across the contemporary physical sciences, including soft matter, solid state, biophysics, and materials science. The subjects covered also have applications for students of astronomy, signal processing, scientific computation, and others. (Prerequisites: PHYS-316 or equivalent course or Graduate standing.) Lecture 3 (Biannual).
IMGS-616
Fourier Methods for Imaging
This course develops the mathematical methods required to describe continuous and discrete linear systems, with special emphasis on tasks required in the analysis or synthesis of imaging systems. The classification of systems as linear/nonlinear and shift variant/invariant, development and use of the convolution integral, Fourier methods as applied to the analysis of linear systems. The physical meaning and interpretation of transform methods are emphasized. (This class is restricted to graduate students in the IMGS-MS or IMGS-PHD programs.) Lecture 3 (Fall).

Admissions and Financial Aid

This program is available on-campus only.

Offered Admit Term(s) Application Deadline STEM Designated
Full‑time Fall February 15 priority deadline, rolling thereafter Yes
Part‑time Fall Rolling No

Full-time study is 9+ semester credit hours. Part-time study is 1‑8 semester credit hours. International students requiring a visa to study at the RIT Rochester campus must study full‑time.

Application Details

To be considered for admission to the Astrophysical Sciences and Technology MS program, candidates must fulfill the following requirements:

English Language Test Scores

International applicants whose native language is not English must submit one of the following official English language test scores. Some international applicants may be considered for an English test requirement waiver.

TOEFL IELTS PTE Academic
79 6.5 56

International students below the minimum requirement may be considered for conditional admission. Each program requires balanced sub-scores when determining an applicant’s need for additional English language courses.

How to Apply Start or Manage Your Application

Cost and Financial Aid

An RIT graduate degree is an investment with lifelong returns. Graduate tuition varies by degree, the number of credits taken per semester, and delivery method. View the general cost of attendance or estimate the cost of your graduate degree.

A combination of sources can help fund your graduate degree. Learn how to fund your degree

Research

The astrophysical sciences and technology program offers students a wide range of research opportunities spanning observational and theoretical astrophysics, computational astrophysics, general relativity and gravitational wave astronomy, and the design and development of advanced detectors and instrumentation for astronomy. RIT hosts a vibrant astronomy and astrophysics research community of more than 60 faculty, post-docs, research fellows, and graduate students who participate in three designated research centers:

Faculty and students frequently obtain data from space observatories including the Hubble Space Telescope, the Spitzer Space Telescope, the Chandra X-ray Observatory, the Herschel Space Observatory, and various ground-based observatories such as the Gemini Observatory, twin 8.1-meter diameter optical/infrared telescopes located in Hawaii and Chile, the W. M. Keck Observatory on Hawaii, and the Very Large Array radio telescope facility in New Mexico. RIT is a member of the LIGO Scientific Collaboration, which analyzes the data taken by the Laser Interferometer Gravitational-Wave Observatory, and a member of the Legacy Survey of Space Time Corporation, which will operate an 8.4 m telescope at the Vera C. Rubin Observatory in Chile, to conduct a 10-year survey of the Southern skies.

Computing facilities include the GravitySimulator supercomputer, dedicated to N-body simulations of galactic nuclei and stellar clusters and the NewHorizons computer cluster, for numerical relativity and relativistic hydrodynamics simulations. Funding has recently been obtained to acquire an even more powerful 600-core cluster (BlueSky). Researchers at RIT's Center for Computational Relativity and Gravitation also have access to national supercomputing facilities, such as the Blue Waters supercomputer at the National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign.

RIT’s Center for Detectors operates extensive research laboratory facilities: the Rochester Imaging Detector LaboratoryLobozzo Photonics LabIntegrated Photonics LabExperimental Cosmology LabSuborbital Astrophysics LabLaboratory for Advanced Instrumentation ResearchExpitaxially-Integrated Nanoscale Systems LabQuantum Imaging and Information Lab, and the Electrical and Optical Characterization Lab. The Center also has access to state-of-the-art simulation software, and machining and electronic assembly facilities, such as the Semiconductor & Microsystems Fabrication Lab and the Center for Electronics Manufacturing and Assembly.

Faculty involved in the astrophysical sciences and technology program regularly attract substantial external research funding from national and state agencies, including funding support from NASA, National Science Foundation, NYSTAR (Empire State Development Division of Science, Technology, and Innovation), amounting to over $12 million in the last four years.

Current research interests include:

  • Strong-field gravitational dynamics of interacting compact objects such as black holes and neutron stars
  • Magnetohydrodynamical simulations of the accretion disks and other astrophysical environments around supermassive black-holes
  • Detection of gravitational wave signatures of binary black holes and/or neutron stars in close binary orbits
  • Single Photon Counting Detectors for NASA Astronomy Missions
  • New Infrared Detectors for Astrophysics
  • Microgrid polarizer arrays
  • Young stars and proto-planetary disks
  • Chandra Planetary Nebula Survey
  • Feeding and Feedback in Active Galactic Nebulae (AGN)
  • AGN feedback in galaxy clusters
  • Supermassive black holes in low redshift elliptical galaxies
  • Reverberation mapping the circum-nuclear torus in AGN
  • Stellar dynamics and supermassive black holes in galactic nuclei
  • Hydrodynamical signatures of dark-matter dominated satellite galaxies

Latest News