Environmental Science Bachelor of science degree

3b6970ff-dbc6-4652-ba3b-f519ba30c865 | 6219099

Overview

Dual Degree

Combine a love for nature with cutting-edge research to create a sustainable future for our planet in this innovative environmental science degree.


Earning an environmental science degree from RIT gives you the problem-solving skills needed to be successful in the field. This major combines a love for nature with cutting edge research to create a sustainable future for our planet. Meaningful fieldwork gives you experience in solving real-world problems.

Environmental scientists solve problems relating to power generation, waste reduction and recycling, pollution control, land use, and land cover change, preserving biodiversity and ecological services, transportation, forestry, agriculture, economics, and a wide range of other areas. They study our relationship to nature and to each other, developing solutions that prevent or reverse environmental deterioration and work toward sustainability. Meeting these challenges requires problem-solving abilities based in science, mathematics, the social sciences, and other disciplines. This is an interdisciplinary degree with a strong foundation in biology, mathematics, chemistry, physics, and geographic information systems. The BS program provides you with the education and experiences you’ll need to be successful.

Real World Experience

Undergraduate research is strongly encouraged and strengthens your preparation for graduate study or employment. Students are encouraged to participate in undergraduate research experience under the guidance of faculty mentors. Students are also encouraged to apply for summer research internships both here at RIT and at other institutions. In addition to undergraduate research, optional cooperative education opportunities offer students a great way to get a head start on their career with paid, professional work experience with local, state, or federal government agencies, nonprofit environmental organizations, and a host of environmental consulting firms.

Nature of Work

Environmental scientists and geoscientists use their knowledge of the physical makeup and history of the Earth to protect the environment; locate water, mineral, and energy resources; predict future geologic hazards; and offer environmental site assessments and advice on indoor air quality, hazardous waste site remediation and construction and land-use projects. Most of their time is devoted to office or field work and often includes data analysis and report/proposal writing.

Careers in Environmental Science

There is a great need for individuals who have both a strong background in environmental science and the ability to participate in an interdisciplinary problem-solving team. Upon graduation, students will be valued for their broad understanding of environmental science, their depth of knowledge in a particular aspect of environmental science, and their ability to attack and solve tough environmental problems.

Industries


  • Environmental Services

  • Forestry

  • Natural Resources

  • Scientific and Technical Consulting

Typical Job Titles

City Research Scientist Education Presenter
Environmental Analyst Environmental Scientist
Field Biologist Graduate Research Assistant
LiDAR Technician Philanthropy and Operations Coordinator
Physical Scientist Pump and Process Operator Trainee
Remote Sensing Technician Research Engineer

72%

outcome rate of graduates

$35k

median first-year salary of graduates

Cooperative Education

Cooperative education, or co-op for short, is full-time, paid work experience in your field of study. And it sets RIT graduates apart from their competitors. It’s exposure–early and often–to a variety of professional work environments, career paths, and industries. RIT co-op is designed for your success

Co-op is optional for students in the environmental science degree. 

Explore salary and career information for Environmental Science BS 

Featured Work

Featured Profiles

Curriculum for Environmental Science BS

Environmental Science, BS degree, typical course sequence

Course Sem. Cr. Hrs.
First Year
BIOL-121
Introductory Biology I
This course serves as an introduction to molecular biology, cellular biology, genetics, developmental biology, and evolutionary biology. Topics will include: a study of the basic principles of modern cellular biology, including cell structure and function; the chemical basis and functions of life, including enzyme systems and gene expression; and both the processes and patterns of the organismal development (ontogeny) and the evolution of life on Earth (phylogeny). Laboratory experiments are designed to illustrate concepts of basic cellular, molecular, developmental, and evolutionary biology, develop laboratory skills and techniques for microscopy and biotechnology, and improve ability to make, record and interpret observations. Lab 3, Lecture 3 (Fall, Spring).
4
BIOL-122
Introductory Biology II
This course serves as an introduction to the diversification of life, plant anatomy and physiology, animal anatomy and physiology, and ecology. Topics include a survey of the taxonomic diversity of the major groups of living organisms, the anatomical and physiological adaptations of both plants and animals, and the principles of the ecological relationships among organisms and environments. Laboratory exercises are designed to illustrate concepts of taxonomy, anatomical & physiological adaptation, and ecological relationships. Labs are also designed to help the development of laboratory skills and techniques for experiments with live organisms, and improve the ability to make, record and interpret observations. Lab 3, Lecture 3 (Fall, Spring).
4
ENVS-101
General Education – Elective: Concepts of Environmental Science
This course is the foundation course for the Environmental Science major and presents an integrated approach to the interrelated, interdisciplinary principles of environmental science through lecture, case studies and active participation. In this course, the focus will be on sustainability as the foundation for problem solving while investigating a number of environmental issues and establishing environmental literacy. Topics may include biodiversity, ecosystems, pollution, energy, and global climate change. To demonstrate the interdisciplinary methodology of environmental science, elements of government/political science/policy, ethics, economics, sociology, history and engineering are embedded in the scientific matrix used to present this course. Lecture 3 (Fall, Spring).
3
ENVS-102
Environmental Concepts Lab
This course is the laboratory component of the foundation course for the Environmental Science major. Through in-class exercises, outside labs, and field trips, students will begin to learn problem solving and analytical skills needed to investigate and address complex environmental issues. Topics may include assessing campus biodiversity and ecosystems, calculating personal and campus ecological footprints and sustainability indices, environmental modeling, and campus sustainability efforts. To demonstrate the interdisciplinary methodology of environmental science, elements of government/political science/policy, ethics, economics, sociology, and history are embedded in the scientific matrix used to present this course. (Co-requisites: ENVS-101 or equivalent course.) Lab 3 (Fall).
1
ENVS-111
General Education – Elective: Soil Science
This is an introductory course on soil science, covering concepts such as soil taxonomy, soil ecology, physical soil properties, soil formation and geomorphology, and soil conservation. The lecture portion of the course will consist of in-class demonstrations and exercises, discussion groups, and traditional lecture materials. Lab exercises will focus on field sampling techniques and bench analyses, soil texture and partial size analyses, basic soil chemistry properties, land use planning, and spatial analyses. Lab 3, Lecture 3 (Fall).
4
MATH-161
General Education – Mathematical Perspective A: Applied Calculus
This course is an introduction to the study of differential and integral calculus, including the study of functions and graphs, limits, continuity, the derivative, derivative formulas, applications of derivatives, the definite integral, the fundamental theorem of calculus, basic techniques of integral approximation, exponential and logarithmic functions, basic techniques of integration, an introduction to differential equations, and geometric series. Applications in business, management sciences, and life sciences will be included with an emphasis on manipulative skills. (Prerequisite: C- or better in MATH-101, MATH-111, MATH-131, NMTH-260, NMTH-272 or NMTH-275 or Math Placement Exam score greater than or equal to 45.) Lecture 4 (Fall, Spring).
4
YOPS-10
RIT 365: RIT Connections
RIT 365 students participate in experiential learning opportunities designed to launch them into their career at RIT, support them in making multiple and varied connections across the university, and immerse them in processes of competency development. Students will plan for and reflect on their first-year experiences, receive feedback, and develop a personal plan for future action in order to develop foundational self-awareness and recognize broad-based professional competencies. Lecture 1 (Fall, Spring).
0
 
General Education – Artistic Perspective
3
 
General Education – Global Perspective
3
 
General Education – First-Year Writing (WI)
3
Second Year
BIOL-240
General Ecology (WI-PR)
This course is an introduction to population, community and ecosystem ecology, stressing the dynamic interrelationships of plant and animal communities with their environments. The course includes such ecological concepts as energy flow and trophic levels in natural communities, population and community dynamics, biogeography and ecosystem ecology. (Prerequisites: BIOL-102 or BIOL-122 or (1001-201, 1001-202 and 1001-203) or (1001-251, 1001-252 and 1001-253) or equivalent course.) Lab 3, Lecture 3 (Fall).
4
CHMG-141
General Education – Natural Science Inquiry Perspective: General & Analytical Chemistry I
This is a general chemistry course for students in the life and physical sciences. College chemistry is presented as a science based on empirical evidence that is placed into the context of conceptual, visual, and mathematical models. Students will learn the concepts, symbolism, and fundamental tools of chemistry necessary to carry on a discourse in the language of chemistry. Emphasis will be placed on the relationship between atomic structure, chemical bonds, and the transformation of these bonds through chemical reactions. The fundamentals of organic chemistry are introduced throughout the course to emphasize the connection between chemistry and the other sciences. Lecture 3, Recitation 1 (Fall, Spring, Summer).
3
CHMG-142
General Education – Scientific Principles Perspective: General & Analytical Chemistry II
The course covers the thermodynamics and kinetics of chemical reactions. The relationship between energy and entropy change as the driving force of chemical processes is emphasized through the study of aqueous solutions. Specifically, the course takes a quantitative look at: 1) solubility equilibrium, 2) acid-base equilibrium, 3) oxidation-reduction reactions and 4) chemical kinetics. (Prerequisites: CHMG-141 or CHMG-131 or equivalent course.) Lecture 3 (Fall, Spring, Summer).
3
CHMG-145
General Education – Natural Science Inquiry Perspective: General & Analytical Chemistry I Lab
The course combines hands-on laboratory exercises with workshop-style problem sessions to complement the CHMG-141 lecture material. The course emphasizes laboratory techniques and data analysis skills. Topics include: gravimetric, volumetric, thermal, titration and spectrophotometric analyses, and the use of these techniques to analyze chemical reactions. (Corequisite: CHMG-141 or CHMG-131 or equivalent course.) Lab 3 (Fall, Spring, Summer).
1
CHMG-146
General Education – Scientific Principles Perspective: General & Analytical Chemistry Lab II
The course combines hands-on laboratory exercises with workshop-style problem sessions to complement the CHMG-142 lecture material. The course emphasizes the use of experiments as a tool for chemical analysis and the reporting of results in formal lab reports. Topics include the quantitative analysis of a multicomponent mixture using complexation and double endpoint titration, pH measurement, buffers and pH indicators, the kinetic study of a redox reaction, and the electrochemical analysis of oxidation reduction reactions. (Prerequisites: CHMG-131 or CHMG-141 or equivalent course. Corequisites: CHMG-142 or equivalent course.) Lab 3 (Fall, Spring, Summer).
1
ENVS-250
Applications of Geographic Information Systems
Through hands-on projects and case studies, this course illustrates concepts and applications of raster and vector geographic information systems (GIS) in a variety of disciplines, such as environmental science, biology, geology, geography, sociology, and economics. Students will learn how to use GIS software and spatial analyses, plan a project, create a database, and conduct an independent project. Students should have completed a foundational course in their major and be comfortable working with computers. Experience with programming is also useful. (Foundational course in student's major field of study or permission of instructor). Lec/Lab 6 (Fall).
4
ENVS-301
Environmental Science Field Skills
Environmental Science Field Skills presents an integrated approach to the interrelated, interdisciplinary principles of environmental science through case studies, site visits and field work. In this course, the focus will be on learning methods for environmental analysis, including experimental design, water and soil quality, primary production and biodiversity, land use/land cover change and ecosystem restoration. The course will culminate in a stressed stream analysis of a local watershed. Additional topics may include geographic information systems, wetlands, environmental education and sustainable food production. The interdisciplinary nature of environmental science will be illustrated through elements of government/political science/policy, ethics, economics, sociology, history and engineering. (Prerequisites: ENVS-201 and CHMG-141 and BIOL-122 or equivalent courses.) Lab 3, Lecture 3 (Spring).
4
STS0-220
General Education – Elective: Environment and Society
3
Choose one of the following:
3
   STSO-421
   General Education – Elective: Environmental Policy
This course introduces students to federal, state, and local environmental policies and the various policy paths leading to their establishment. Students will understand how societal values inform the content of environmental policies and the impacts, in turn, of these policies on society. In addition, the class will explore how environmental economics informs the new tools of environmental policy. The course covers a range of environmental policies at the U.S. and international levels addressing problems such as air and water pollution, climate change, energy use, and community sustainability. Lecture (Spring).
 
   STSO-422
   General Education – Elective: Great Lakes
This course utilizes the Great Lakes Basin as an integrating context for understanding global environmental issues. Examining the basin through an interdisciplinary environmental lens the class applies social science approaches to environmental problem solving. Students assess the local, regional, national and international scope of Great Lakes environmental issues through lecture, role-play, and field experiences and consider the importance of government action, public policy, ethics, economics, sociology, history, and engineering while applying social science analysis skills such as surveys, interviews, and content analysis to better understand the depth of local environmental problems and their potential solutions. Environmental science majors prepare a proposal for an environmental consulting project. Lecture (Fall).
 
   PUBL-210
   General Education – Elective: Introduction to Qualitative Policy Analysis
This course teaches the practical aspects of doing theoretically informed qualitative social research with policy applications. Special attention is given to the processes by which research problems are formulated, research designs selected, data gathered and interpreted, and inferences and conclusions drawn. A variety of tools, such as surveys, interviewing, and content analysis will be applied to specific case studies covering multiple policy issues. Lecture (Spring).
 
 
General Education – Ethical Perspective
3
 
Open Elective
3
Third Year
BIOL-575
Conservation Biology
This course focuses on the application of ecological principles to conservation issues. Human impact on species diversity is emphasized as it relates to agricultural, forest, coastal and wetland ecosystems. Case studies of management practices used to manage and restore disturbed ecosystems are included. (Prerequisites: BIOL-240 or equivalent course.) Lecture 3 (Spring).
3
CHMO-231
General Education – Elective: Organic Chemistry I
This course is a study of the structure, nomenclature, reactions and synthesis of the following functional groups: alkanes, alkenes, alkynes. This course also introduces chemical bonding, IR and NMR spectroscopy, acid and base reactions, stereochemistry, nucleophilic substitution reactions, and alkene and alkyne reactions. In addition, the course provides an introduction to the use of mechanisms in describing and predicting organic reactions. (Prerequisites: CHMG-142 or CHMG-131 or equivalent course. Corequisites: CHMO-235 or equivalent course.) Lecture 3 (Fall, Spring, Summer).
3
CHMO-235
General Education – Elective: Organic Chemistry Lab I
This course trains students to perform techniques important in an organic chemistry lab. The course also covers reactions from the accompanying lecture CHMO-231. (Corequisite: CHMO-231 or equivalent course.) Lab 3 (Fall, Spring, Summer).
1
ENVS-550
Hydrologic Applications of Geographic Information Systems
Aerial photography, satellite imagery, Global Positioning Systems (GPS), and Geographic Information Systems (GIS) are extremely useful tools in hydrologic modeling and environmental applications such as rainfall runoff modeling, pollution loading, landscape change analyses, and terrain modeling. This course will: 1) introduce students to spatial analysis theories, techniques and issues associated with hydrologic and environmental applications; 2) provide hands-on training in the use of these spatial tools and models while addressing a real problem; 3) provide experience linking GIS and model results to field assessments and monitoring activities; and 4) enable students to solve a variety of spatial and temporal hydrologic and environmental problems. (Prerequisites: ENVS-250 or equivalent course.) Studio 6 (Spring).
4
STAT-145
General Education – Mathematical Perspective B: Introduction to Statistics I
This course introduces statistical methods of extracting meaning from data, and basic inferential statistics. Topics covered include data and data integrity, exploratory data analysis, data visualization, numeric summary measures, the normal distribution, sampling distributions, confidence intervals, and hypothesis testing. The emphasis of the course is on statistical thinking rather than computation. Statistical software is used. (Prerequisite: MATH-101 or MATH-111 or NMTH-260 or NMTH-272 or NMTH-275 or a math placement exam score of at least 35.) Lecture 3 (Fall, Spring, Summer).
3
STAT-146
General Education – Elective: Introduction to Statistics II
This course is an elementary introduction to the topics of regression and analysis of variance. The statistical software package Minitab will be used to reinforce these techniques. The focus of this course is on business applications. This is a general introductory statistics course and is intended for a broad range of programs. (Prerequisites: STAT-145 or equivalent course.) Lecture 6 (Fall, Spring, Summer).
4
 
Concentration Courses
6
 
General Education – Social Perspective
3
 
General Education – Immersion 1
3
 
Open Elective
3
Fourth Year
ENVS-551
Environmental Science Capstone Seminar I
This course brings together all of the principles of Environmental Science the student has learned during his/her four year undergraduate education at RIT. To accomplish this, students will work in teams to provide solutions to a real environmental problem or issue. In addition to working with RIT faculty, the students will work with practicing environmental scientists and the public. This first course will focus on problem definition, developing a problem solving strategy, and begin data collection and background analyses. Students will present their preliminary findings to the client through presentations and status reports. (This course is restricted to 4th year students in the ENVS-BS, ENVS-2M and ENVS-MN programs.) Lec/Lab 3 (Fall).
3
ENVS-552
Environmental Science Capstone Seminar II (WI-PR)
This course continues to bring together all of the principles of Environmental Science the student has learned during his/her four year undergraduate education at RIT as the follow-up to the first capstone course. Students will work in teams to provide solutions to a real environmental problem or issue. In addition to working with RIT faculty, the students will work with practicing environmental scientists and the public. This second course will focus on refining the methodology and strategy proposed to address the environmental issue, continue data collection and background analyses, interpret results, and propose solutions to the assigned problem. Students will generate a final report and present their findings to the clients. (Prerequisites: ENVS-551 or equivalent course.) Lec/Lab 3 (Spring).
3
IMGS-431
Environmental Applications of Remote Sensing
This course offers an introduction to remote sensing systems and a selection of environmental applications of remote sensing. The basic properties of electromagnetic radiation, its interaction with the atmosphere and earth surfaces (e.g., vegetation, minerals, water, etc.), and the interpretation of these interactions are dealt with in the first half of the course. This is followed by a description of airborne and spaceborne, active and passive sensors that operate throughout the electromagnetic spectrum for detecting physical phenomena. Finally, an introduction is provided to pre-processing and analysis techniques that are useful for extracting information from such sensors. The Earth's atmospheric, hydrospheric, and terrestrial processes are considered at local to regional scales. Application areas include monitoring vegetation health, measuring biomass (carbon sequestration), identifying cultural features, assessing water resources, and detecting pollution and natural hazards. (Prerequisites: ENVS-250 or equivalent course.) Lab 3, Lecture 2 (Fall).
3
 
Concentration Courses
8
 
Open Electives
6
 
General Education – Immersion 2, 3
6
Total Semester Credit Hours
123

Please see General Education Curriculum (GE) for more information.

(WI) Refers to a writing intensive course within the major.

Please see Wellness Education Requirement for more information. Students completing bachelor's degrees are required to complete two different Wellness courses.

Concentrations

Cellular and Molecular Biology
Course
BIOL-202
Molecular Biology
This course will address the fundamental concepts of molecular biology. Class discussions, assignments, and laboratory projects will explore the structure and function of molecules and macromolecules, and processes important to storage and maintenance of genetic information and genetic information flow. Students in this course will explore molecular interactions that drive biological processes related to genetic information flow. Students in this course will gain an understanding of various molecular mechanisms, structure/function relationships, and processes as they relate to molecular biology. Students in this course will practice and carry out common laboratory techniques used by Molecular Biologists including, recombinant DNA technology and the detection and tracking of important macromolecules such as DNA, RNA and proteins. (Prerequisites: C- or better in (BIOL-101/102 and BIOL-103/104) or (BIOL-121/122) or equivalent. Students who have taken BIOL-201 cannot receive credit for BIOL-202. Co-requisites: (CHMG-141/145) or (CHEM-151/155) or CHMG-131 or equivalent course.) Lab 3, Lecture 3 (Fall, Spring).
BIOL-204
Introduction to Microbiology
This course is an introduction to microorganisms and their importance. Principles of structure and function, metabolic diversity, taxonomy, environmental microbiology, bioremediation, and infectious diseases of bacteria are discussed. Basic laboratory techniques covered include: microscopy; staining, culturing, isolation, and identification of bacteria; isolation and identification of normal flora; identification of unknown bacteria; antibiotic resistance; metabolic tests; clinical and commercial testing protocols; and detection and counting of bacteria in environmental samples (foods, water, soils). (Prerequisites: BIOL-201 or BIOL-202 or BIOG-240 or equivalent course.) Lab 3, Lecture 3 (Fall, Spring, Summer).
BIOL-265
Evolutionary Biology
This course investigates the historical framework of evolutionary biology and the meaning/nature of evidence pertinent to biological evolution. Topics will include: earth history, the evolution of proteins and the genetic code, molecular evolution, neutral theory vs. selection, genetic variation, natural selection, migration, mutation, genetic drift, fitness, population dynamics and genetics, speciation, systematics and classification systems, molecular phylogenetics, the evolution of eukaryotic organisms, behavioral evolution, historical biogeography, and human evolution and variation. (Prerequisites: (BIOL-101 and BIOL-102) or (BIOL-121 and BIOL-122) or equivalent courses.) Lecture 3, Recitation 2 (Fall).
BIOL-302
Cell Biology
This course will address the fundamental concepts of cell biology. Class discussions, assignments, and laboratory projects will 1) Explore the structure-function relationships that drive cellular processes at the molecular, cellular and tissue level. 2) Investigate the mechanisms of cellular signaling and the transmission of genetic information. 3) Examine energy transformation strategies and the biochemical pathways used for synthesis and breakdown of ATP and other important biomolecules. 4) Investigate the organizational strategies used by cells to form functional tissue and organ systems. (Prerequisites: BIOL-202 or equivalent course.) Lecture 3 (Spring).
BIOL-303
Cell Physiology
This course is a study of functional eukaryotic cellular physiology with an emphasis on the role of global gene expression in cellular function and disease. Nuclear and cytoplasmic regulation of macromolecular synthesis, regulation of cellular metabolism, control of cell growth, and the changes in cell physiology in disease are covered. This course also covers the technology used for studying changes in gene expression associated with cell differentiation and disease. The associated laboratory covers microarray techniques. This includes design and implementation of an experiment to acquire gene expression data, analyzing the acquired data using simple computer programs, such as MAGIC, and writing a research paper explaining findings. (Prerequisites: BIOL-201 or BIOL-302 or BIOG-240 or equivalent course.) Lab 3, Lecture 2 (Fall).
BIOL-305
Plants, Medicine and Technology
Plants have played a significant role in the shaping of our world. This course will explore the utilization of plants for foods, fuels, materials, medicine, novel genetic information, and social aspects of different cultures. All cultures depend on about fifteen plant species, most of which have been changed by plant improvement methods to enhance human benefits. This course will explore these changes in important crops, plant constituents used in medicine, and the technology used to produce important plant-produced medicines. (Prerequisites: BIOL-201 or BIOL-202 or BIOG-240 or equivalent course.) Lecture 4 (Spring).
BIOL-307
Microbiology of Wastewater
This is an advanced course in the microbiology of wastewater treatment, solids treatment, and the generation and maintenance of drinking water. Topics include activated sludge processes, clarification processes, disinfection processes, trickling filters, rotating biological contactors, waste stabilization ponds, sludge microbiology, anaerobic digestion of biosolids, microbial aspects of drinking water and drinking water distribution systems, and public health aspects of wastewater and biosolids disposal on land and in marine systems. (Prerequisites: BIOL-204 or equivalent course.) Lecture 3 (Spring).
BIOL-310
Bio-energy: Microbial Production
This course presents how microbial processes are used to produce various biofuels from renewable feedstocks. The topics presented include bioethanol production, biobutanol production, methane (biogas) production, biodiesel production, and the economics involved with the production of alternative fuels. (Prerequisites: BIOL-204 or equivalent course.) Lecture 3 (Spring).
BIOL-321
Genetics
Introduction to the principles of inheritance; the study of genes and chromosomes at molecular, cellular, organismal, and population levels. (Prerequisites: BIOL-201 or BIOL-202 or BIOG-240 or equivalent course.) Lecture 3, Recitation 1 (Fall, Spring, Summer).
BIOL-322
Developmental Biology
This course is a study of the processes of growth, differentiation and development that lead to the mature form of an organism. The course will also address how developmental biology is integrated with other aspects of biology including disease, ecology, and evolution. (Prerequisites: BIOL-201 or BIOL-202 or BIOG-240 or equivalent course.) Lab 3, Lecture 3 (Fall).
BIOL-345
Molecular Ecology
This course explores the biology of populations and communities of organisms using molecular data. As DNA, RNA and proteins are nearly universal between organisms, the principles taught in this course will have wide applications, both within ecology and throughout many sub-disciplines of biology. Furthermore, this course will prepare students to apply the techniques in numerous research fields. The primary literature and worldwide applications of the field of molecular ecology will be incorporated into the course. (Prerequisites: BIOL-201 or BIOL-202 or BIOG-240 or equivalent course.) Lecture 3 (Spring).
BIOL-365
Introduction to Population Genetics
This course consists of a study of DNA, genes, inheritance, genetic variation, genetic architecture, and change within and among populations. Fundamental genetics topics include DNA, gene, and chromosomal structure and function along with, transmission genetics, Mendelian inheritance patterns, sex-linked inheritance, genetic linkage, and the Hardy-Weinberg Principle. Population based topics will include genetic variation, its importance, how it originates and is maintained as well as inbreeding, random mating, mutation, migration, selection, genetic drift, the effects of small population size, fitness, population subdivision, the shifting balance theory, inter-deme selection, kin selection, neutral theory, molecular evolution, molecular clocks, multi-gene families, gene conversion, artificial selection, the genetic basis of quantitative traits and the fundamental theorem of natural selection. (Prerequisites: BIOL-265 or equivalent course.) Lecture 3 (Spring).
BIOL-370
Environmental Microbiology
This course presents the microbiology of soils, freshwater, marine environments, and extreme environments. Topics include nutrient cycling in soils by microorganisms, the diversity of microorganisms in soils, the role of microorganisms in freshwater environments such as lakes, rivers, and wetlands and marine environments such as the open ocean, coastline environments, and salt marshes, and the diversity of microorganisms in extreme environments including highly acidic, highly alkaline, and highly saline environments. Laboratory experiments will explore the types of bacteria in different types of soils in Western New York, types of bacteria in different freshwater environments in Western NY, determining total and fecal coliform counts in freshwaters, determining the presence of antibiotic resistant coliforms in sediment samples, and examining the survival of various human pathogens in surface waters. (Prerequisites: BIOL-204 or equivalent course.) Lab 3, Lecture 3 (Fall).
BIOL-380
Bioremediation
This course is an introduction to bioremediation focusing on the interactions between engineers, chemists, hydrologists, and microbiologists to develop, design, and implement strategies to remediate contaminated soils or water. Topics include microorganisms involved in bioremediation, types of chemical pollutants, economics of remediation, environmental factors important in bioremediation, in situ processes, and ex situ processes. The laboratory project involves the isolation of hydrocarbon degrading bacteria from soils and sediments and further characterization of the hydrocarbon degrading isolates with respect to types of hydrocarbons degraded and rate of degradation. (Prerequisites: BIOL-204 or equivalent course.) Lab 3, Lecture 3 (Spring).
BIOL-403
Fundamentals of Plant Biochemistry and Pathology
This course is primarily focused on biochemical and pathological aspects of a plant's life. This course provides an understanding of why protein catalysts are important in the field of plant biochemistry and plant pathology. More specifically, the role enzymes play in the basic cellular processes of plant growth and development is presented. Topics related to plant pathology are presented; such as plant disease epidemics, plant diagnosis, plant diseases caused by fungi, bacteria, nematodes, viruses, and plant-pathogen interaction, at the ecological, physiological and genetic level. (Prerequisites: BIOL-321 and BIOL-325 or equivalent courses.) Lab 3, Lecture 3 (Fall, Spring).
BIOL-460
Infectious Disease: Impact on Society and Culture
This course is an introduction to the probabilistic models and statistical techniques used in computational molecular biology. Examples include Markov models, such as the Jukes-Cantor and Kimura evolutionary models and hidden Markov models, and multivariate models use for discrimination and classification. (Prerequisites: CHMB-402 or BIOL-201 or BIOL-202 or BIOG-240. Students may not take and receive credit for BIOL-460 and CHMB-460. If you have earned credit for CHMB-460 or you are currently enrolled in CHMB-460 you may not enroll in BIOL-460.) Lecture 3 (Spring).
Chemistry
Course
CHEM-201
Clean Energy: Hydrogen Fuel Cells
This course focuses on clean energy sources, theories of different fuel cell operations, hydrogen infrastructure, and the introduction of devices that employ hydrogen. Principles of energy utilization as they relate to the issues of global warming are presented. The fundamentals of electrochemistry, acid-base reactions, organic chemistry, polymers, thermodynamics, chemical kinetics, photochemistry, and plasma chemistry will be covered to develop a foundation for an understanding of renewable energy and hydrogen technology. Topics in the course include technical aspects of hydrogen utilization for power generation and transportation. Disposal schemes for by-products are also discussed. (Prerequisites: CHMG-121 or CHMG-131 or CHMG-141 or CHEM-151 or equivalent course.) Lecture 3 (Spring, Summer).
CHEM-203
Clean Energy: Hydrogen Fuel Cells Laboratory
This laboratory course introduces the science of hydrogen technology and fuel cells. Students will gain hands-on experience in hydrogen systems instrumentation assembly, building control systems, and measuring the amount of hydrogen generated. Students will also become familiar with hydrogen sensing. (Corequisites: CHEM-201 or equivalent course.) Lab 2 (Spring, Summer).
CHEM-531
Climate Change: Science Technology & Policy
This multidisciplinary course will provide students with diverse perspectives on global climate change issues, providing a survey of important aspects of the problem. Topics include atmospheric chemistry, climate modeling, ecological impacts and feedbacks, economics of climate change, international climate policies, and social and environmental justice. The course will include a variety of instructors and guest lecturers, providing an overview of the complex and inter-related nature of global climate change. (This class is restricted to undergraduate students with at least 3rd year standing.) Lecture 3 (Spring).
CHMA-261
Instrumental Analysis
This course presents a preliminary treatment of instrumental theory and technique. The course will cover the theory and implementation of spectroscopic, mass spectrometric, and chemical separations instrumentation and techniques. Instrumental techniques include: atomic and molecular emission and absorption and emission spectroscopies, atomic and molecular mass spectrometry, gas chromatography, and high performance liquid chromatography. (Prerequisites: CHMA-161 or CHMG-142 or equivalent course. Corequisities: CHMA-265 or equivalent course.) Lecture 3 (Fall).
CHMA-265
Instrumental Analysis Lab
This course presents hands-on experience with modern chemical instrumentation including a number of spectroscopic techniques, mass spectrometry, gas chromatography, high performance liquid chromatography, and other. The course will cover the theory of operation of each instrument, their capabilities, and their limitations. Students will perform experiments utilizing modern chemical instrumentation and gain experience in analyzing data and presenting experimental results. (Prerequisites: CHMA-161 or CHMG-142 or equivalent course. Corequisities: CHMA-261 or equivalent course.) Lab 3 (Fall).
CHMA-621
Advanced Instrument Analysis Lab
This is a capstone course requiring students to develop experimental protocols involving advanced techniques in instrumental analysis. This course is intended to give an opportunity to develop innovative skills and writing proficiency. Library, literature and textbook research will be required. (Prerequisites: CHMB-405 or CHMP-445 or Graduate Standing in CHEM-MS.) Lab 6 (Spring).
CHMB-460
Infectious Diseases: Impact Society & Culture
This course investigates the mechanisms of pathogenesis of bacterial, viral, and other microbial infectious agents. This course also covers the historical, social, and cultural impact that these infectious diseases have had on society. Topics may include: antibiotics and antibiotic resistance, vaccines, gut microflora and health, foodborne illnesses, bioterrorism, HIV, tuberculosis, malaria, and staph infections. (Prerequisites: CHMB-402 or BIOL-201. Students may not take and receive credit for BIOL-460 and CHMB-460. If you have earned credit for BIOL-460 or you are currently enrolled in BIOL-460 you will not be permitted to enroll in CHMB-460.) Lecture 3 (Spring).
CHMI-351
Descriptive Inorganic Chemistry
This course covers descriptive inorganic reactions in terms of periodic trends. Topics will include nucleosynthesis and the birth of the universe, applications used in large-scale industrial processes and their environmental impacts, nanostructured materials, and bonding theory will also be discussed. A detailed study of solid-state chemistry and structure will also be addressed. (Prerequisite: CHMO-231 or CHMO-331 or equivalent course.) Lecture 3 (Fall, Spring, Summer).
CHMO-232
Organic Chemistry II
This course is a continuation of the study of the structure, nomenclature, reactions and synthesis of the following functional groups: aromatic systems, alcohols, ethers, epoxides, and carbonyls. This course will introduce the use of mechanisms in describing and predicting organic reactions. (Prerequisites: CHMO-231 or CHMO-331 or equivalent course. Corequisites: CHMO-236 or equivalent course.) Lecture 3 (Fall, Spring).
CHMO-236
Organic Chemistry Lab II
This course teaches students to apply basic lab techniques to organic synthetic experiments reactions covered in the accompanying lecture COS-CHMO-232. This course will also help students to solidify the concepts taught in lecture. The course will continue to instruct students in maintaining a professional lab notebook. (Prerequisites: CHMO-235 or equivalent course. Corequisites: CHMO-232 or equivalent course.) Lab 3 (Fall, Spring).
CHMP-441
Physical Chemistry I
This course provides fundamental concepts, and organizing principles, applied in all aspects of chemistry and related fields. A rigorous and detailed explanation of central, unifying concepts in thermodynamics and chemical kinetics will be developed. Mathematical models that provide quantitative predictions will be described for thermodynamics and chemical kinetics. These contain the mathematical underpinnings to concepts applied in analytical, inorganic, organic, and biochemistry courses, as well as more advanced topics in chemistry. The course will cover: gases, temperature, energy and the First Law of Thermodynamics, entropy and the Second and Third laws, Helmholtz and Gibbs free energies, criteria for equilibrium and spontaneity, chemical equilibrium, electrochemistry, kinetic molecular theory and chemical kinetics. (Prerequisites: MATH-219 or MATH-251 or STAT-145 and PHYS-211 or equivalent course.) Lecture 4 (Fall, Spring).
ENVS-670
Advanced Concepts of Environmental Chemistry
This course will build on previous chemistry courses to expand knowledge of biogeochemical cycles, environmental toxicology and applied methods of environmental analysis. The course will be conducted in a workshop format at the graduate level. (Prerequisites: CHMO-231 and CHMO-235 or CHMO-331 and CHMO-335 or equivalent courses.) Lec/Lab 3 (Spring).
Ecology and Field Biology
Course
BIOL-205
Animal Behavior
This course is a comparative study of animal behavior from an evolutionary perspective. Lectures will examine the organization of behaviors including survival behaviors, social dynamics, and human behavior. Labs will demonstrate methods of gathering and interpreting behavioral data in the laboratory and in the field. (Prerequisites: BIOL-102 or BIOL-122 or (1001-201, 1001-202 and 1001-203) or (1001-251, 1001-252 and 1001-253) or equivalent course.) Lab 3, Lecture 3 (Fall).
BIOL-207
Galapagos: Ecology and Evolution
A semester-long lecture course followed by a 14-day field trip to Ecuador and the Galápagos Islands. Students meet weekly on the RIT campus during spring semester to learn about the wildlife and geology of the islands, and about their influence on Darwin’s theory of evolution. Galápagos is still an area of vibrant research and students will be introduced to current ecological, genetic, and geological studies. We will explore ongoing difficulties of balancing human needs with environmental conservation in the Galápagos. The field trip occurs shortly after the close of the semester in which the course is given. We will visit various sites in the islands, with excursions focusing on the unique wildlife and the geology. There are frequent snorkeling opportunities. The course provides outstanding opportunities for nature photography. Enrollment is limited to 15 students. A travel fee is required. (Permission of instructor) (This course requires permission of the Instructor to enroll.) Lecture 1 (Fall).
BIOL-211
Invertebrate Zoology
A study of the biology of invertebrate animals with emphasis on phylogeny and functional morphology. (Prerequisites: BIOL-102 or BIOL-122 or (1001-201, 1001-202 and 1001-203) or (1001-251, 1001-252 and 1001-253) or equivalent course.) Lab 3, Lecture 3 (Spring).
BIOL-212
Vertebrate Zoology
This course provides a synthesis of the ecological, behavioral, anatomical, and physiological characteristics of vertebrates in an evolutionary context. (Prerequisites: BIOL-102 or BIOL-122 or (1001-201, 1001-202 and 1001-203) or (1001-251, 1001-252 and 1001-253) or equivalent course.) Lecture 3 (Fall).
BIOL-218
Biology of Plants
This course will focus on aspects of plant anatomy and diversity and their impact on plant physiology. Adaptations to the environment and biotechnological approaches to unraveling the physiology of plants will be explored. A feature of this course will be discussion groups on plant topics from the popular scientific literature- e.g. Biofuels, Bioengineered Plants. The laboratory classes will follow the lectures closely, to give an opportunity to examine the structure and physiology of different plant genera. (Prerequisites: BIOL-102 or BIOL-122 or (1001-201, 1001-202 and 1001-203) or (1001-251, 1001-252 and 1001-253) or equivalent course.) Lab 3, Lecture 2 (Fall).
BIOL-265
Evolutionary Biology
This course investigates the historical framework of evolutionary biology and the meaning/nature of evidence pertinent to biological evolution. Topics will include: earth history, the evolution of proteins and the genetic code, molecular evolution, neutral theory vs. selection, genetic variation, natural selection, migration, mutation, genetic drift, fitness, population dynamics and genetics, speciation, systematics and classification systems, molecular phylogenetics, the evolution of eukaryotic organisms, behavioral evolution, historical biogeography, and human evolution and variation. (Prerequisites: (BIOL-101 and BIOL-102) or (BIOL-121 and BIOL-122) or equivalent courses.) Lecture 3, Recitation 2 (Fall).
BIOL-290
Vertebrate Evolution
This course is a study of the major changes in vertebrate functional morphology through time. The course will begin with fossilized fish records. The vertebrate evolution will then be traced to the era of mammals and end with humans. Additionally fossil evidence depicting major transitions between the vertebrate classes, modern taxonomy, including cladistic analysis, geologic time and stratigraphy, and plate tectonics will be presented. (Prerequisites: BIOL-102 or BIOL-122 or (1001-201, 1001-202 and 1001-203) or (1001-251, 1001-252 and 1001-253) or equivalent course.) Lecture 3 (Fall, Spring).
BIOL-293
Evolution and Creationism
This course explores the current controversy over the teaching of evolution in the public schools. Topics covered include pre-Darwinian views of natural history, Natural Theology and the argument from design, pre-Darwinian views of evolution, On The Origin of Species, and the public and scientific reception of natural selection. The major 20th and 21st century court cases, beginning with Scopes, and the Creationist responses, will be presented. The social and philosophical implications of evolution will be a major underlying theme. (Prerequisites: BIOL-102 or BIOL-122 or (1001-201, 1001-202 and 1001-203) or (1001-251, 1001-252 and 1001-253) or equivalent course.) Lecture 3 (Fall).
BIOL-309
Comparative Vertebrate Anatomy
This course is a comparative study of the evolution of organ systems among vertebrate animals with an emphasis on structural changes in homologous characters among representative vertebrate lineages. The course will explore the concepts of allometry, biomechanics, biophysics, ontogeny, phylogeny using examples from vertebrate integument, skeletal, muscular, respiratory, circulatory, digestive, urogenital, endocrine, nervous, and sensory systems. (Prerequisites: BIOL-265 or equivalent course.) Lab 3, Lecture 1 (Spring).
BIOL-313
Comparative Animal Physiology
This course is a comparative study of fundamental physiological mechanisms. It covers a broad range of organisms studied from the standpoint of evolution of functional systems, the mechanisms and morphological variations that exist to deal with functional problems posed by the environment, and the special mechanisms used to cope with extreme environments. (Prerequisites: BIOL-240 or BIOL-265 or BIOL-202 or BIOG-240 or equivalent course.) Lab 3, Lecture 3 (Spring).
BIOL-343
Tropical Ecology
BIOL-371
Freshwater Ecology
This course will explore the ecology of freshwater ecosystems, including rivers, lakes, and wetlands; with an emphasis on ecosystems in Western New York. The chemical and physical environment of each system and the resulting biological communities will be explored. Threats to the ecosystem services supplied by freshwater resources will also be investigated. (Prerequisites: BIOL-240 or equivalent course.) Lab 3, Lecture 3 (Spring).
BIOL-385
Seneca Park Zoo Internship
This course will combine in-class lecture from specialists in the zoological field with volunteering in a zoo. This course will require the use of knowledge gained to design an exhibit for a selected species as a group. Topics covered will include the purpose of zoos, the history of the Seneca Park Zoo, wildlife medicine, population (conservation) genetics, biological exhibit design, zoo research, animal behavior, zoo management, zoo community education, and zoo ethics. There will be an opportunity to develop an understanding of the biological basis of the zoo’s activities. This course will provide an intensive hands-on experience by assisting zoo staff in one department area for 8 hours, plus 2 hours of classroom work, per week over the semester. (Prerequisites: BIOL-240 or BIOL-265 or equivalent course.) Lecture 2 (Fall).
BIOL-414
Animal Nutrition
In this course, students will explore applied topics in companion, agriculture, and wildlife animal nutrition. Emphasis will be placed on an overview of nutrient classes and methods of nutrient analysis, biological nutrient requirements and common problems arising from nutrient deficiencies, comparative digestive strategies, and specialized adaptations of animal with different feeding strategies. Class discussions will focus on reading and interpretation of primary literature and investigating applied nutritional research questions. (Prerequisite: BIOL-212 or BIOL-313 or equivalent.) Lecture 3 (Fall).
BIOL-444
Ornithology
This course will cover the major principles in ornithology from evolutionary origins to the study of physiology, flight, behavior, life history traits and conservation. Exploration of current topics in avian biology and exploration of bird diversity will be key features of the lecture and lab. Labs will introduce current techniques in applied avian research and monitoring in both the field and lab. (Prerequisites: BIOL-212 or BIOL-240 or equivalent courses.) Lab 2, Lecture 2 (Fall).
BIOL-455
Biogeography
This course is the study of the distribution of biodiversity on the earth. Patterns of past and present animal and plant distributions are used to help understand the mechanisms of basic biological processes including speciation, dispersal, divergence, and extinction. This course will cover the character and history of the science of biogeography, as well as its basic principles and applications. We will also examine the assumptions, methods, and conclusions of historically significant biogeographic studies. (Prerequisites: BIOL-240 or BIOL-265 or equivalent course.) Lecture 3 (Spring).
BIOL-573
Marine Biology
This course explores marine biology by focusing on the diversity of life and influence of oceanographic phenomena on the various ecosystems. Morphological and physiological adaptations along with environmental threats will also be investigated. (Prerequisites: BIOL-240 or equivalent course.) Lecture 3 (Fall).
ENVS-305
Urban Ecology
Urban Ecology focuses first on the natural systems of urban areas and how those systems function in an undisturbed setting, with an emphasis on the types of ecosystem functions and services natural systems provide. Second, the course focuses on how humans have impacted those natural systems through urban development, and how those impacts can be mitigated or avoided by using the examples provided by nature to influence more sustainable development and maintain (or even enhance) ecological functions and services in urban landscapes. The course will examine and compare examples of several urban settings from around the world, paying particular attention to the connections between the physical, social and cultural aspects of sustainability. The course will meet during spring semester, with a required 2.5-week study tour to Malmö, Sweden after graduation in May. Students must apply through the Office of Study Abroad and an additional fee applies to the course. (Prerequisites: This class is restricted to students with at least 2nd year standing.) Lecture 2 (Spring).
ENVS-311
Wetlands
This is a course on the interactions of vegetation, soils, and hydrology that characterize wetlands. Ecosystem characteristics and processes are emphasized. Wetland policies, regulations, classification, and value systems are also covered. Field work and hands-on learning are integrated into the course through projects and field trips. (Prerequisites: BIOL-240 or equivalent course.) Lec/Lab 4 (Fall).
ENVS-531
Climate Change: Science Technology & Policy
This multidisciplinary course will provide students with diverse perspectives on global climate change issues, providing a survey of important aspects of the problem. Topics include atmospheric chemistry, climate modeling, ecological impacts and feedbacks, economics of climate change, international climate policies, and social and environmental justice. The course will include a variety of instructors and guest lecturers, providing an overview of the complex and inter-related nature of global climate change. (This class is restricted to undergraduate students with at least 3rd year standing.) Lecture 3 (Spring).
Economics
Course
ECON-201
Principles of Macroeconomics
Macroeconomics studies aggregate economic behavior. The course begins by presenting the production possibilities model. This is followed by a discussion of basic macroeconomic concepts including inflation, unemployment, and economic growth and fluctuations. The next topic is national income accounting, which is the measurement of macroeconomic variables. The latter part of the course focuses on the development of one or more macroeconomic models, a discussion of the role of money in the macroeconomy, the aggregate supply-aggregate demand framework, and other topics the individual instructor may choose. (Prerequisites: ECON-101 or completion of one (1) 400 or 500 level ECON course.) Lecture (Fall, Spring, Summer).
ECON-401
Intermediate Microeconomic Theory
This course develops the tools that are commonly used to study the allocation of resources in a private enterprise economy. Topics covered include the theory of consumer behavior, cost and production, and alternate market structures. (Prerequisites: ECON-101 or completion of one (1) 400 or 500 level ECON course and MATH-161 or MATH-171 or MATH-181 or MATH-181A or equivalent courses.) Lecture (Fall, Spring).
ECON-403
Econometrics I
Econometrics I provides students with the opportunity to develop their skills in applied regression analysis. It covers various regression estimation techniques, data preparation and transformation, and the interpretation of regression results. There is particular emphasis on the dangers of misuse of regression techniques. The course covers regression analysis for both cross-sectional and time series data. (Prerequisties: ECON-101 or completion of one (1) 400 or 500 level ECON course and (MATH-171 or 1016-171T or MATH-181 or MATH-181A) and (STAT-145 or STAT/CQAS-251 or MATH-251 or STAT-205 or equivalent courses.) Lecture 3 (Fall, Spring).
ECON-404
Mathematical Methods: Economics
Mathematical Methods: Economics provides students with an introduction to quantitative techniques used in economics such as matrix algebra, one- and multi-variable differential calculus, and unconstrained and constrained optimization. The emphasis of the instruction is on the application of these techniques to fortify and broaden a student's understanding of traditional economic topics like utility maximization, cost minimization, duality in consumer theory, expected utility, and profit maximization. (Prerequisites: ECON-101 or completion of one (1) 400 or 500 level ECON course and (MATH-171 or MATH-181 or MATH-181A) or equivalent courses.) Lecture (Spring).
ECON-406
Global Economic Issues
This course is focused on understanding economic problems in a global perspective. The students will study the impact of globalization on economic growth and income disparity among countries. Global economic issues such as poverty, hunger, refugees, and transnational terrorism will be studied. We will also discuss global efforts to attain progress such as the United Nations Millennium Development Goals. The course work will emphasize the analysis of international economic data. (Prerequisites: ECON-101 or completion of one (1) 400 or 500 level ECON course.) Lecture (Spring).
ECON-421
Natural Resource Economics
This course develops an economic perspective on one of the most important and challenging issues facing global society: the allocation, use, and preservation of natural resources. The course presents and discusses the methodology economists use to inform natural resource managers and policy makers. Economic thought and analysis are used to evaluate a variety of issues in this area. The course concludes with a brief discussion of the interdisciplinary aspects of natural resource management. (Prerequisites: ECON-101 or completion of one (1) 400 or 500 level ECON course.) Lecture (Fall).
ECON-422
Benefit-Cost Analysis
Benefit-Cost Analysis fosters better understanding of the efficiency consequences of governmental micro-economic actions, both regulatory and fiscal. The course explores the logic, value and limitations of benefit-cost analysis as a public policy tool commonly used, and misused, in comparing the relative merits of alternative government actions. (Prerequisites: ECON-101 or completion of one (1) 400 or 500 level ECON course.) Lecture (Spring).
ECON-440
Urban Economics
Urban economics is the application of economic analysis to spatial relationships in densely populated (urban) areas. The course develops economic models that explain the existence and growth of cities; the location behavior of consumers and businesses in cities; and the economic rationale and effects of zoning and growth controls. The course then applies the insights gained from these models to a number of urban issues. (Prerequisites: ECON-101 or completion of one (1) 400 or 500 level ECON course.) Lecture (Biannual).
ECON-444
Public Finance
Public Finance is the study of the microeconomics of the public sector. The course fosters better understanding of the scale, scope and results of government spending and taxes. The focus is on economic efficiency in resource allocation and fairness in the distribution of income and wealth. (Prerequisites: ECON-101 or completion of one (1) 400 or 500 level ECON course.) Lecture (Biannual).
ECON-448
Development Economics
This course provides an introduction to development economics, which focuses on the problems and challenges faced typically but not exclusively by the developing countries. In this course we will study the economic transformation of developing countries by focusing on the characteristics of land, labor and credit markets in rural areas of developing countries. We will survey the large literature on modeling economic growth and discuss relevant case studies from developing countries. (Prerequisites: ECON-101 or completion of one (1) 400 or 500 level ECON course.) Lecture (Fall).
ECON-503
Econometrics II
Econometrics II builds on skills in applied regression analysis by exploring advanced regression estimation topics including panel data estimation, Instrumental Variable and Two-Stage-Least-Squares estimation, simultaneous equation models, limited dependent variable models, and advanced time series topics. (Prerequisites: ECON-403 or equivalent course.) Lecture (Biannual).
ECON-520
Environmental Economics
This course examines the relationship and apparent conflict between economic growth and environmental quality, the economics of environmental issues and policy, the environment as a resource and a public good, and the ability and lack of ability of free markets and the government to deal adequately with pollution and other environmental problems. (Prerequisites: ECON-101 or completion of one (1) 400 or 500 level ECON course.) Lecture (Spring).
Mathematics
Course
MATH-221
Multivariable and Vector Calculus
This course is principally a study of the calculus of functions of two or more variables, but also includes a study of vectors, vector-valued functions and their derivatives. The course covers limits, partial derivatives, multiple integrals, Stokes' Theorem, Green's Theorem, the Divergence Theorem, and applications in physics. Credit cannot be granted for both this course and MATH-219. (Prerequisite: C- or better MATH-173 or MATH-182 or MATH-182A or equivalent course.) Lecture 4 (Fall, Spring, Summer).
MATH-231
Differential Equations
This course is an introduction to the study of ordinary differential equations and their applications. Topics include solutions to first order equations and linear second order equations, method of undetermined coefficients, variation of parameters, linear independence and the Wronskian, vibrating systems, and Laplace transforms. (Prerequisite: MATH-173 or MATH-182 or MATH-182A or equivalent course.) Lecture 3 (Fall, Spring, Summer).
MATH-241
Linear Algebra
This course is an introduction to the basic concepts of linear algebra, and techniques of matrix manipulation. Topics include linear transformations, Gaussian elimination, matrix arithmetic, determinants, vector spaces, linear independence, basis, null space, row space, and column space of a matrix, eigenvalues, eigenvectors, change of basis, similarity and diagonalization. Various applications are studied throughout the course. (Prerequisites: MATH-190 or MATH-200 or MATH-219 or MATH-220 or MATH-221 or MATH-221H or equivalent course.) Lecture 3 (Fall, Spring).
MATH-326
Boundary Value Problems
This course provides an introduction to boundary value problems. Topics include Fourier series, separation of variables, Laplace's equation, the heat equation, and the wave equation in Cartesian and polar coordinate systems. (Prerequisites: (MATH-231 or MATH-233) and (MATH-219 or MATH-221) or equivalent courses.) Lecture 3 (Fall, Spring).
MATH-341
Advanced Linear Algebra
This is a second course in linear algebra that provides an in-depth study of fundamental concepts of the subject. It focuses largely on the effect that a choice of basis has on our understanding of and ability to solve problems with linear operators. Topics include linear transformations, similarity, inner products and orthogonality, QR factorization, singular value decomposition, and the Spectral Theorem. The course includes both computational techniques and the further development of mathematical reasoning skills. (Prerequisites: MATH-241 or equivalent course.) Lecture 3 (Spring, Summer).
MATH-351
Graph Theory
This course covers the theory of graphs and networks for both directed and undirected graphs. Topics include graph isomorphism, Eulerian and Hamiltonian graphs, matching, covers, connectivity, coloring, and planarity. There is an emphasis on applications to real world problems and on graph algorithms such as those for spanning trees, shortest paths, and network flows. (Prerequisites: MATH-190 or MATH-200 or 1055-265 or equivalent course.) Lecture 3 (Fall).
MATH-381
Complex Variables
This course covers the algebra of complex numbers, analytic functions, Cauchy-Riemann equations, complex integration, Cauchy's integral theorem and integral formulas, Taylor and Laurent series, residues, and the calculation of real-valued integrals by complex-variable methods. (Prerequisites: MATH-219 or MATH-221 or equivalent course.) Lecture 3 (Fall, Spring).
Organismal Biology and Evolution
Course
BIOL-204
Introduction to Microbiology
This course is an introduction to microorganisms and their importance. Principles of structure and function, metabolic diversity, taxonomy, environmental microbiology, bioremediation, and infectious diseases of bacteria are discussed. Basic laboratory techniques covered include: microscopy; staining, culturing, isolation, and identification of bacteria; isolation and identification of normal flora; identification of unknown bacteria; antibiotic resistance; metabolic tests; clinical and commercial testing protocols; and detection and counting of bacteria in environmental samples (foods, water, soils). (Prerequisites: BIOL-201 or BIOL-202 or BIOG-240 or equivalent course.) Lab 3, Lecture 3 (Fall, Spring, Summer).
BIOL-207
Galapagos: Ecology and Evolution
A semester-long lecture course followed by a 14-day field trip to Ecuador and the Galápagos Islands. Students meet weekly on the RIT campus during spring semester to learn about the wildlife and geology of the islands, and about their influence on Darwin’s theory of evolution. Galápagos is still an area of vibrant research and students will be introduced to current ecological, genetic, and geological studies. We will explore ongoing difficulties of balancing human needs with environmental conservation in the Galápagos. The field trip occurs shortly after the close of the semester in which the course is given. We will visit various sites in the islands, with excursions focusing on the unique wildlife and the geology. There are frequent snorkeling opportunities. The course provides outstanding opportunities for nature photography. Enrollment is limited to 15 students. A travel fee is required. (Permission of instructor) (This course requires permission of the Instructor to enroll.) Lecture 1 (Fall).
BIOL-211
Invertebrate Zoology
A study of the biology of invertebrate animals with emphasis on phylogeny and functional morphology. (Prerequisites: BIOL-102 or BIOL-122 or (1001-201, 1001-202 and 1001-203) or (1001-251, 1001-252 and 1001-253) or equivalent course.) Lab 3, Lecture 3 (Spring).
BIOL-212
Vertebrate Zoology
This course provides a synthesis of the ecological, behavioral, anatomical, and physiological characteristics of vertebrates in an evolutionary context. (Prerequisites: BIOL-102 or BIOL-122 or (1001-201, 1001-202 and 1001-203) or (1001-251, 1001-252 and 1001-253) or equivalent course.) Lecture 3 (Fall).
BIOL-218
Biology of Plants
This course will focus on aspects of plant anatomy and diversity and their impact on plant physiology. Adaptations to the environment and biotechnological approaches to unraveling the physiology of plants will be explored. A feature of this course will be discussion groups on plant topics from the popular scientific literature- e.g. Biofuels, Bioengineered Plants. The laboratory classes will follow the lectures closely, to give an opportunity to examine the structure and physiology of different plant genera. (Prerequisites: BIOL-102 or BIOL-122 or (1001-201, 1001-202 and 1001-203) or (1001-251, 1001-252 and 1001-253) or equivalent course.) Lab 3, Lecture 2 (Fall).
BIOL-265
Evolutionary Biology
This course investigates the historical framework of evolutionary biology and the meaning/nature of evidence pertinent to biological evolution. Topics will include: earth history, the evolution of proteins and the genetic code, molecular evolution, neutral theory vs. selection, genetic variation, natural selection, migration, mutation, genetic drift, fitness, population dynamics and genetics, speciation, systematics and classification systems, molecular phylogenetics, the evolution of eukaryotic organisms, behavioral evolution, historical biogeography, and human evolution and variation. (Prerequisites: (BIOL-101 and BIOL-102) or (BIOL-121 and BIOL-122) or equivalent courses.) Lecture 3, Recitation 2 (Fall).
BIOL-290
Vertebrate Evolution
This course is a study of the major changes in vertebrate functional morphology through time. The course will begin with fossilized fish records. The vertebrate evolution will then be traced to the era of mammals and end with humans. Additionally fossil evidence depicting major transitions between the vertebrate classes, modern taxonomy, including cladistic analysis, geologic time and stratigraphy, and plate tectonics will be presented. (Prerequisites: BIOL-102 or BIOL-122 or (1001-201, 1001-202 and 1001-203) or (1001-251, 1001-252 and 1001-253) or equivalent course.) Lecture 3 (Fall, Spring).
BIOL-293
Evolution and Creationism
This course explores the current controversy over the teaching of evolution in the public schools. Topics covered include pre-Darwinian views of natural history, Natural Theology and the argument from design, pre-Darwinian views of evolution, On The Origin of Species, and the public and scientific reception of natural selection. The major 20th and 21st century court cases, beginning with Scopes, and the Creationist responses, will be presented. The social and philosophical implications of evolution will be a major underlying theme. (Prerequisites: BIOL-102 or BIOL-122 or (1001-201, 1001-202 and 1001-203) or (1001-251, 1001-252 and 1001-253) or equivalent course.) Lecture 3 (Fall).
BIOL-303
Cell Physiology
This course is a study of functional eukaryotic cellular physiology with an emphasis on the role of global gene expression in cellular function and disease. Nuclear and cytoplasmic regulation of macromolecular synthesis, regulation of cellular metabolism, control of cell growth, and the changes in cell physiology in disease are covered. This course also covers the technology used for studying changes in gene expression associated with cell differentiation and disease. The associated laboratory covers microarray techniques. This includes design and implementation of an experiment to acquire gene expression data, analyzing the acquired data using simple computer programs, such as MAGIC, and writing a research paper explaining findings. (Prerequisites: BIOL-201 or BIOL-302 or BIOG-240 or equivalent course.) Lab 3, Lecture 2 (Fall).
BIOL-309
Comparative Vertebrate Anatomy
This course is a comparative study of the evolution of organ systems among vertebrate animals with an emphasis on structural changes in homologous characters among representative vertebrate lineages. The course will explore the concepts of allometry, biomechanics, biophysics, ontogeny, phylogeny using examples from vertebrate integument, skeletal, muscular, respiratory, circulatory, digestive, urogenital, endocrine, nervous, and sensory systems. (Prerequisites: BIOL-265 or equivalent course.) Lab 3, Lecture 1 (Spring).
BIOL-313
Comparative Animal Physiology
This course is a comparative study of fundamental physiological mechanisms. It covers a broad range of organisms studied from the standpoint of evolution of functional systems, the mechanisms and morphological variations that exist to deal with functional problems posed by the environment, and the special mechanisms used to cope with extreme environments. (Prerequisites: BIOL-240 or BIOL-265 or BIOL-202 or BIOG-240 or equivalent course.) Lab 3, Lecture 3 (Spring).
BIOL-322
Developmental Biology
This course is a study of the processes of growth, differentiation and development that lead to the mature form of an organism. The course will also address how developmental biology is integrated with other aspects of biology including disease, ecology, and evolution. (Prerequisites: BIOL-201 or BIOL-202 or BIOG-240 or equivalent course.) Lab 3, Lecture 3 (Fall).
BIOL-414
Animal Nutrition
In this course, students will explore applied topics in companion, agriculture, and wildlife animal nutrition. Emphasis will be placed on an overview of nutrient classes and methods of nutrient analysis, biological nutrient requirements and common problems arising from nutrient deficiencies, comparative digestive strategies, and specialized adaptations of animal with different feeding strategies. Class discussions will focus on reading and interpretation of primary literature and investigating applied nutritional research questions. (Prerequisite: BIOL-212 or BIOL-313 or equivalent.) Lecture 3 (Fall).
BIOL-444
Ornithology
This course will cover the major principles in ornithology from evolutionary origins to the study of physiology, flight, behavior, life history traits and conservation. Exploration of current topics in avian biology and exploration of bird diversity will be key features of the lecture and lab. Labs will introduce current techniques in applied avian research and monitoring in both the field and lab. (Prerequisites: BIOL-212 or BIOL-240 or equivalent courses.) Lab 2, Lecture 2 (Fall).
BIOL-573
Marine Biology
This course explores marine biology by focusing on the diversity of life and influence of oceanographic phenomena on the various ecosystems. Morphological and physiological adaptations along with environmental threats will also be investigated. (Prerequisites: BIOL-240 or equivalent course.) Lecture 3 (Fall).
BIOL-673
Marine Biology
This course explores marine biology by focusing on the diversity of life and influence of oceanographic phenomena on the various ecosystems. Morphological and physiological adaptations along with environmental threats will also be investigated. The course will explore marine conservation issues, in depth. (Prerequisites: BIOL-240 or equivalent course or graduate student standing in the ENVS-MS program.) Lecture 4 (Fall).
ENVS-311
Wetlands
This is a course on the interactions of vegetation, soils, and hydrology that characterize wetlands. Ecosystem characteristics and processes are emphasized. Wetland policies, regulations, classification, and value systems are also covered. Field work and hands-on learning are integrated into the course through projects and field trips. (Prerequisites: BIOL-240 or equivalent course.) Lec/Lab 4 (Fall).
Public Policy
Course
PUBL-301
Public Policy Analysis
This course provides students with necessary tools to help them become effective policy analysts. The course places particular emphasis on understanding the policy process, the different approaches to policy analysis, and the application of quantitative methods, such as cost-benefit analysis, sampling designs, and decision trees. Students will apply these tools to contemporary public policy decision making at the local, state, federal, and international levels. (Prerequisites: This class is restricted to students with at least 2nd year standing.) Lecture 3 (Spring).
PUBL-302
Decision Analysis
This course provides students with an introduction to decision science and analysis. The course focuses on several important tools for making good decisions, including forecasting, risk analysis, and multi-attribute decision making. Students will apply these tools to contemporary public policy decision making at the local, state, federal, and international levels. (Prerequisites: This class is restricted to students with at least 2nd year standing.) Lecture 3 (Spring).
PUBL-530
Energy Policy
This course provides an overview of energy resources, technologies, and policies designed to ensure clean, stable supplies of energy for the future. The course evaluates the impacts of fossil fuel, renewable energy, and hydrogen technologies on society and how public policies can be used to influence their development. The development of U.S. energy policy is of particular concern, although a global perspective will be integrated throughout the course. Lecture (Spring).
PUBL-531
Climate Change: Science, Technology and Policy
This multidisciplinary course will provide students with diverse perspectives on global climate change issues, providing a survey of important aspects of the problem. Topics include atmospheric chemistry, climate modeling, ecological impacts and feedbacks, economics of climate change, international climate policies, and social and environmental justice. The course will include a variety of instructors and guest lecturers, providing an overview of the complex and inter-related nature of global climate change. (This class is restricted to undergraduate students with at least 3rd year standing.) Lecture 3 (Spring).
STSO-201
Science and Technology Policy
Examines how local, state, federal and international policies are developed to influence innovation, the transfer of technology and industrial productivity in the United States and other selected nations. Lecture (Fall, Spring).
STSO-326
History of Ecology and Environmentalism
This course explores the history of ecological science, from the eighteenth century to the present, and it features the political use of ecological ideas in environmental debates, from the 19th century to the present. We investigate how social and political ideas have influenced ecological science, how ecological concepts have influenced Western politics and society, and how different generations of ecological researchers have viewed their role in society. Lecture (Fall).
STSO-330
Energy and the Environment
This course will examine contemporary energy issues, with particular emphasis placed on the environmental implications associated with energy consumption and production. Students will learn about various energy technologies and fuels (including nuclear, coal, oil, natural gas, solar, biomass, and wind) and the environmental tradeoffs associated with each of these energy systems. Lecture (Fall).
STSO-421
Environmental Policy
This course introduces students to federal, state, and local environmental policies and the various policy paths leading to their establishment. Students will understand how societal values inform the content of environmental policies and the impacts, in turn, of these policies on society. In addition, the class will explore how environmental economics informs the new tools of environmental policy. The course covers a range of environmental policies at the U.S. and international levels addressing problems such as air and water pollution, climate change, energy use, and community sustainability. Lecture (Spring).
STSO-521
Biodiversity and Society
This course explores the problems, issues, and values stemming from the current massive loss of biodiversity. Various justifications for preserving or conserving biodiversity will be examined. Although principals of conservation biology are presented, the social/cultural dimensions of the issue will be emphasized. Lecture (Spring).
Remote Sensing and Digital Image Processing
Course
IMGS-251
Radiometry
This course introduces the concepts of quantitative measurement of electromagnetic energy. The basic radiometric and photometric terms are introduced using calculus-based definitions. Governing equations for source propagation and sensor output are derived. Simple source concepts are reviewed and detector figures of merit are introduced and used in problem solving. The radiometric concepts are then applied to simple imaging systems so that a student could make quantitative measurements with imaging instruments. (Prerequisites: MATH-182 or MATH-182A or MATH-173 and PHYS-212 or equivalent courses.) Lab 3, Lecture 2 (Fall).
IMGS-261
Linear and Fourier Methods for Imaging
This course develops the concepts of complex numbers and linear algebra for describing imaging systems in the frequency domain via the discrete and continuous Fourier transforms. (Prerequisite: MATH-173 or MATH-182 or MATH-182A or equivalent course.) Lecture 4 (Spring).
IMGS-361
Image Processing and Computer Vision I
This course is an introduction to the basic concepts of digital image processing. The student will be exposed to image capture and image formation methodologies, sampling and quantization concepts, statistical descriptors and enhancement techniques based upon the image histogram, point processing, neighborhood processing, and global processing techniques based upon kernel operations and discrete convolution as well as the frequency domain equivalents, treatment of noise, geometrical operations for scale and rotation, and grey-level resampling techniques. Emphasis is placed on applications and efficient algorithmic implementation using the student's programming language of choice. (Prerequisites: IMGS-180 and IMGS-261 or equivalent courses.) Lecture 3 (Fall).
IMGS-362
Image Processing & Computer Vision II
This course is considers the more advanced concepts of digital image processing. The topics include image reconstruction, noise sources and techniques for noise removal, information theory, image compression, video compression, wavelet transformations, frequency-domain based applications, morphological operations, and modern digital image watermarking and steganography algorithms. Emphasis is placed on applications and efficient algorithmic implementation using the student’s computer programming language of choice, technical presentation, and technical writing. (Prerequisites: IMGS-361 or equivalent course.) Lecture 3 (Spring).
IMGS-371
Imaging Systems Analysis
This course will introduce students to the theory and practice of imaging systems analysis. Students will learn about the physical factors that affect the spatial and temporal response properties of optical, electronic, and biological imaging systems, and the mathematical methods that have been developed for describing these properties. Through hands-on projects, students will learn practical methods for measuring, modeling, and controlling the spatial and temporal point spread functions (PSFs) and modulation transfer functions (MTFs) of imaging systems. (COS-IMGS-180 and COS-IMGS-261, or equivalent) (Prerequisites: IMGS-180 and IMGS-362 or equivalent courses.) Lecture 4 (Fall).
IMGS-462
Multivariate Statistical Image Processing
This course discusses the digital image processing concepts and algorithms used for the analysis of hyperspectral, multispectral, and multi-channel data in multiple imaging application areas. Concepts are covered at the theoretical and implementation level using current, popular commercial software packages and high-level programming languages to work examples, homework problems and programming assignments. The requisite multivariate statistics will be presented as part of this course as an extension of the univariate statistics that the students have previously been exposed to in the introductory statistics classes. Topics include methods for supervised data classification, clustering algorithms and unsupervised classification, multispectral data transformations, data-redundancy reduction techniques, derivation of non-spectral images features to aid in the classification process, and data fusion for resolution enhancement. (Prerequisites: IMGS-362 or equivalent course.) Lecture 3 .
IMGS-532
Advanced Environmental Applications of Remote Sensing
This course will focus on a broader selection of analytical techniques with an application-centric presentation. These techniques include narrow-band indices, filtering in the spatial and frequency domains, principal component analysis, textural analysis, hybrid and object-oriented classifiers, change detection methods, and structural analysis. All of these techniques are applied to assessment of natural resources. Sensing modalities include imaging spectroscopy (hyperspectral), multispectral, and light detection and ranging (lidar) sensors. Applications such as vegetation stress assessment, foliar biochemistry, advanced image classification for land use purposes, detecting change between image scenes, and assessing topography and structure in forestry and grassland ecosystems (volume, biomass, biodiversity) and built environments will be examined. Real-world remote sensing and field data from international, US, and local sources are used throughout this course. (Prerequisites: IMGS-431 and (PHYS-112 or 1017-212 or 1017-212T or 1017-213 or PHYS-212) or equivalent courses.) Lab 3, Lecture 2 (Spring).
Statistics
Course
BIOL-470
Statistical Analysis for Bioinformatics
This course is an introduction to the probabilistic models and statistical techniques used in computational molecular biology. Examples include Markov models, such as the Jukes-Cantor and Kimura evolutionary models and hidden Markov models, and multivariate models use for discrimination and classification. (Prerequisites: (MATH-161 or MATH-173 or MATH-182) and (STAT-145 or MATH-251) or equivalent courses.) Lecture 3 (Spring).
STAT-305
Regression Analysis
This course covers regression techniques with applications to the type of problems encountered in real-world situations. It includes use of the statistical software SAS. Topics include a review of simple linear regression, residual analysis, multiple regression, matrix approach to regression, model selection procedures, and various other models as time permits. (Prerequisites: MATH-241 and MATH-252 or equivalent courses.) Lecture 3 (Spring).
STAT-325
Design of Experiments
This course is a study of the design and analysis of experiments. It includes extensive use of statistical software. Topics include single-factor analysis of variance, multiple comparisons and model validation, multifactor factorial designs, fixed, random and mixed models, expected mean square calculations, confounding, randomized block designs, and other designs and topics as time permits. (Prerequisites: STAT-205 or MATH-252 or equivalent courses.) Lecture 3 (Fall).
STAT-335
Introduction to Time Series
This course is a study of the modeling and forecasting of time series. Topics include ARMA and ARIMA models, autocorrelation function, partial autocorrelation function, detrending, residual analysis, graphical methods, and diagnostics. A statistical software package is used for data analysis. (Prerequisites: STAT-205 or MATH-252 or equivalent courses.) Lecture 3 (Spring).
STAT-345
Nonparametric Statistics
This course is an in-depth study of inferential procedures that are valid under a wide range of shapes for the population distribution. Topics include tests based on the binomial distribution, contingency tables, statistical inferences based on ranks, runs tests and randomization methods. A statistical software package is used for data analysis. (Prerequisites: STAT-205 or MATH-252 or equivalent courses.) Lecture 3 (Fall).
STAT-415
Statistical Sampling
This course provides a basis for understanding the selection of the appropriate tools and techniques for analyzing survey data. Topics include design of simple surveys, methods of data collection, a study of standard sampling methods. A statistical software package is used for data analysis. (Prerequisites: STAT-205 or MATH-252 or equivalent courses.) Lecture 3 (Spring).
STAT-425
Multivariate Analysis
This course is a study of the multivariate normal distribution, statistical inference on multivariate data, multivariate analysis of covariance, canonical correlation, principal component analysis, and cluster analysis. A statistical software package such as Excel or SAS is used for data analysis. (Prerequisites: STAT-305 or equivalent courses.) Lecture 3 (Spring).
STAT-521
Statistical Quality Control
This course presents the probability models associated with control charts, control charts for continuous and discrete data, interpretation of control charts, and some standard sampling plans as applied to quality control. A statistical software package will be used for data analysis. (Prerequisites: MATH-252 or equivalent course.) Lecture 3 (Fall, Spring).

Accelerated dual degree options

Accelerated dual degree options are for undergraduate students with outstanding academic records. Upon acceptance, well-qualified undergraduate students can begin graduate study before completing their BS degree, shortening the time it takes to earn both degrees. Students should consult an academic adviser for more information.

Environmental Science, BS/MS degree, typical course sequence

Course Sem. Cr. Hrs.
First Year
BIOL-121
Introductory Biology I
This course serves as an introduction to molecular biology, cellular biology, genetics, developmental biology, and evolutionary biology. Topics will include: a study of the basic principles of modern cellular biology, including cell structure and function; the chemical basis and functions of life, including enzyme systems and gene expression; and both the processes and patterns of the organismal development (ontogeny) and the evolution of life on Earth (phylogeny). Laboratory experiments are designed to illustrate concepts of basic cellular, molecular, developmental, and evolutionary biology, develop laboratory skills and techniques for microscopy and biotechnology, and improve ability to make, record and interpret observations. Lab 3, Lecture 3 (Fall, Spring).
4
BIOL-122
Introductory Biology II
This course serves as an introduction to the diversification of life, plant anatomy and physiology, animal anatomy and physiology, and ecology. Topics include a survey of the taxonomic diversity of the major groups of living organisms, the anatomical and physiological adaptations of both plants and animals, and the principles of the ecological relationships among organisms and environments. Laboratory exercises are designed to illustrate concepts of taxonomy, anatomical & physiological adaptation, and ecological relationships. Labs are also designed to help the development of laboratory skills and techniques for experiments with live organisms, and improve the ability to make, record and interpret observations. Lab 3, Lecture 3 (Fall, Spring).
4
ENVS-101
General Education – Elective: Concepts of Environmental Science
This course is the foundation course for the Environmental Science major and presents an integrated approach to the interrelated, interdisciplinary principles of environmental science through lecture, case studies and active participation. In this course, the focus will be on sustainability as the foundation for problem solving while investigating a number of environmental issues and establishing environmental literacy. Topics may include biodiversity, ecosystems, pollution, energy, and global climate change. To demonstrate the interdisciplinary methodology of environmental science, elements of government/political science/policy, ethics, economics, sociology, history and engineering are embedded in the scientific matrix used to present this course. Lecture 3 (Fall, Spring).
3
ENVS-102
Concepts of Environmental Science Lab
This course is the laboratory component of the foundation course for the Environmental Science major. Through in-class exercises, outside labs, and field trips, students will begin to learn problem solving and analytical skills needed to investigate and address complex environmental issues. Topics may include assessing campus biodiversity and ecosystems, calculating personal and campus ecological footprints and sustainability indices, environmental modeling, and campus sustainability efforts. To demonstrate the interdisciplinary methodology of environmental science, elements of government/political science/policy, ethics, economics, sociology, and history are embedded in the scientific matrix used to present this course. (Co-requisites: ENVS-101 or equivalent course.) Lab 3 (Fall).
1
ENVS-111
General Education – Elective: Soil Science
This is an introductory course on soil science, covering concepts such as soil taxonomy, soil ecology, physical soil properties, soil formation and geomorphology, and soil conservation. The lecture portion of the course will consist of in-class demonstrations and exercises, discussion groups, and traditional lecture materials. Lab exercises will focus on field sampling techniques and bench analyses, soil texture and partial size analyses, basic soil chemistry properties, land use planning, and spatial analyses. Lab 3, Lecture 3 (Fall).
4
MATH-161
General Education – Mathematical Perspective A: Applied Calculus
This course is an introduction to the study of differential and integral calculus, including the study of functions and graphs, limits, continuity, the derivative, derivative formulas, applications of derivatives, the definite integral, the fundamental theorem of calculus, basic techniques of integral approximation, exponential and logarithmic functions, basic techniques of integration, an introduction to differential equations, and geometric series. Applications in business, management sciences, and life sciences will be included with an emphasis on manipulative skills. (Prerequisite: C- or better in MATH-101, MATH-111, MATH-131, NMTH-260, NMTH-272 or NMTH-275 or Math Placement Exam score greater than or equal to 45.) Lecture 4 (Fall, Spring).
4
YOPS-10
RIT 365: RIT Connections
RIT 365 students participate in experiential learning opportunities designed to launch them into their career at RIT, support them in making multiple and varied connections across the university, and immerse them in processes of competency development. Students will plan for and reflect on their first-year experiences, receive feedback, and develop a personal plan for future action in order to develop foundational self-awareness and recognize broad-based professional competencies. Lecture 1 (Fall, Spring).
0
 
General Education – Global Perspective
3
 
General Education – Artistic Perspective
3
 
General Education – First-Year Writing (WI)
3
Second Year
BIOL-240
General Ecology (WI-PR)
This course is an introduction to population, community and ecosystem ecology, stressing the dynamic interrelationships of plant and animal communities with their environments. The course includes such ecological concepts as energy flow and trophic levels in natural communities, population and community dynamics, biogeography and ecosystem ecology. (Prerequisites: BIOL-102 or BIOL-122 or (1001-201, 1001-202 and 1001-203) or (1001-251, 1001-252 and 1001-253) or equivalent course.) Lab 3, Lecture 3 (Fall).
4
CHMG-141
General Education – Natural Science Inquiry Perspective: General & Analytical Chemistry I
This is a general chemistry course for students in the life and physical sciences. College chemistry is presented as a science based on empirical evidence that is placed into the context of conceptual, visual, and mathematical models. Students will learn the concepts, symbolism, and fundamental tools of chemistry necessary to carry on a discourse in the language of chemistry. Emphasis will be placed on the relationship between atomic structure, chemical bonds, and the transformation of these bonds through chemical reactions. The fundamentals of organic chemistry are introduced throughout the course to emphasize the connection between chemistry and the other sciences. Lecture 3, Recitation 1 (Fall, Spring, Summer).
3
CHMG-142
General Education – Scientific Principles Perspective: General & Analytical Chemistry II
The course covers the thermodynamics and kinetics of chemical reactions. The relationship between energy and entropy change as the driving force of chemical processes is emphasized through the study of aqueous solutions. Specifically, the course takes a quantitative look at: 1) solubility equilibrium, 2) acid-base equilibrium, 3) oxidation-reduction reactions and 4) chemical kinetics. (Prerequisites: CHMG-141 or CHMG-131 or equivalent course.) Lecture 3 (Fall, Spring, Summer).
3
CHMG-145
General Education – Natural Science Inquiry Perspective: General & Analytical Chemistry I Lab
The course combines hands-on laboratory exercises with workshop-style problem sessions to complement the CHMG-141 lecture material. The course emphasizes laboratory techniques and data analysis skills. Topics include: gravimetric, volumetric, thermal, titration and spectrophotometric analyses, and the use of these techniques to analyze chemical reactions. (Corequisite: CHMG-141 or CHMG-131 or equivalent course.) Lab 3 (Fall, Spring, Summer).
1
CHMG-146
General Education – Scientific Principles Perspective: General & Analytical Chemistry II Lab
The course combines hands-on laboratory exercises with workshop-style problem sessions to complement the CHMG-142 lecture material. The course emphasizes the use of experiments as a tool for chemical analysis and the reporting of results in formal lab reports. Topics include the quantitative analysis of a multicomponent mixture using complexation and double endpoint titration, pH measurement, buffers and pH indicators, the kinetic study of a redox reaction, and the electrochemical analysis of oxidation reduction reactions. (Prerequisites: CHMG-131 or CHMG-141 or equivalent course. Corequisites: CHMG-142 or equivalent course.) Lab 3 (Fall, Spring, Summer).
1
ENVS-250
Applications of Geographic Information Systems
Through hands-on projects and case studies, this course illustrates concepts and applications of raster and vector geographic information systems (GIS) in a variety of disciplines, such as environmental science, biology, geology, geography, sociology, and economics. Students will learn how to use GIS software and spatial analyses, plan a project, create a database, and conduct an independent project. Students should have completed a foundational course in their major and be comfortable working with computers. Experience with programming is also useful. (Foundational course in student's major field of study or permission of instructor). Lec/Lab 6 (Fall).
4
ENVS-301
Environmental Science Field Skills
Environmental Science Field Skills presents an integrated approach to the interrelated, interdisciplinary principles of environmental science through case studies, site visits and field work. In this course, the focus will be on learning methods for environmental analysis, including experimental design, water and soil quality, primary production and biodiversity, land use/land cover change and ecosystem restoration. The course will culminate in a stressed stream analysis of a local watershed. Additional topics may include geographic information systems, wetlands, environmental education and sustainable food production. The interdisciplinary nature of environmental science will be illustrated through elements of government/political science/policy, ethics, economics, sociology, history and engineering. (Prerequisites: ENVS-201 and CHMG-141 and BIOL-122 or equivalent courses.) Lab 3, Lecture 3 (Spring).
4
STSO-220
General Education – Elective: Environment and Society
This course introduces the interdisciplinary foundations of environmental science via an analysis of sustainability within a socio-cultural context. This is a required course for the environmental science degree program. Lecture (Fall).
3
Choose one of the following:
3
   STSO-421
   General Education – Elective: Environmental Policy
This course introduces students to federal, state, and local environmental policies and the various policy paths leading to their establishment. Students will understand how societal values inform the content of environmental policies and the impacts, in turn, of these policies on society. In addition, the class will explore how environmental economics informs the new tools of environmental policy. The course covers a range of environmental policies at the U.S. and international levels addressing problems such as air and water pollution, climate change, energy use, and community sustainability. Lecture (Spring).
 
   STSO-422
   General Education – Elective: Great Lakes
This course utilizes the Great Lakes Basin as an integrating context for understanding global environmental issues. Examining the basin through an interdisciplinary environmental lens the class applies social science approaches to environmental problem solving. Students assess the local, regional, national and international scope of Great Lakes environmental issues through lecture, role-play, and field experiences and consider the importance of government action, public policy, ethics, economics, sociology, history, and engineering while applying social science analysis skills such as surveys, interviews, and content analysis to better understand the depth of local environmental problems and their potential solutions. Environmental science majors prepare a proposal for an environmental consulting project. Lecture (Fall).
 
   PUBL-210
   General Education – Elective: Introduction to Qualitative Policy Analysis
This course teaches the practical aspects of doing theoretically informed qualitative social research with policy applications. Special attention is given to the processes by which research problems are formulated, research designs selected, data gathered and interpreted, and inferences and conclusions drawn. A variety of tools, such as surveys, interviewing, and content analysis will be applied to specific case studies covering multiple policy issues. Lecture (Spring).
 
 
General Education – Ethical Perspective
3
 
Open Elective
3
Third Year
BIOL-675
Advanced Conservation Biology
This course focuses on the application of ecological principles to conservation issues. Human impact on species diversity will be emphasized as it relates to agricultural, forest, coastal and wetland ecosystems. Case studies of management practices used to manage and restore disturbed ecosystems will be included. Students will explore a topic in depth through writing a review paper of published literature. (Prerequisites: BIOL-240 or equivalent course or graduate student standing in the ENVS-MS program.) Lecture 3 (Spring).
3
CHMO-231
General Education – Elective: Organic Chemistry I
This course is a study of the structure, nomenclature, reactions and synthesis of the following functional groups: alkanes, alkenes, alkynes. This course also introduces chemical bonding, IR and NMR spectroscopy, acid and base reactions, stereochemistry, nucleophilic substitution reactions, and alkene and alkyne reactions. In addition, the course provides an introduction to the use of mechanisms in describing and predicting organic reactions. (Prerequisites: CHMG-142 or CHMG-131 or equivalent course. Corequisites: CHMO-235 or equivalent course.) Lecture 3 (Fall, Spring, Summer).
3
CHMO-235
General Education – Elective: Organic Chemistry I Lab
This course trains students to perform techniques important in an organic chemistry lab. The course also covers reactions from the accompanying lecture CHMO-231. (Corequisite: CHMO-231 or equivalent course.) Lab 3 (Fall, Spring, Summer).
1
ENVS-650
Hydrologic Applications of Geographic Information Systems
Aerial photography, satellite imagery, Global Positioning Systems (GPS), and Geographic Information Systems (GIS) are extremely useful tools in hydrologic modeling and environmental applications such as rainfall runoff modeling, pollution loading, landscape change analyses, and terrain modeling. This course will: 1) introduce students to spatial analysis theories, techniques and issues associated with hydrologic and environmental applications; 2) provide hands-on training in the use of these spatial tools and models while addressing a real problem; 3) provide experience linking GIS and model results to field assessments and monitoring activities; 4) enable students to solve a variety of spatial and temporal hydrologic and environmental problems; and 5) provide tools useful for addressing environmental problems related to the graduate thesis or project. (Prerequisites: ENVS-250 or equivalent course or graduate standing in the ENVS-MS program.) Lec/Lab 6 (Spring).
4
STAT-145
General Education – Mathematical Perspective B: Introduction to Statistics I
This course introduces statistical methods of extracting meaning from data, and basic inferential statistics. Topics covered include data and data integrity, exploratory data analysis, data visualization, numeric summary measures, the normal distribution, sampling distributions, confidence intervals, and hypothesis testing. The emphasis of the course is on statistical thinking rather than computation. Statistical software is used. (Prerequisite: MATH-101 or MATH-111 or NMTH-260 or NMTH-272 or NMTH-275 or a math placement exam score of at least 35.) Lecture 3 (Fall, Spring, Summer).
3
STAT-146
General Education – Elective: Introduction to Statistics II
This course is an elementary introduction to the topics of regression and analysis of variance. The statistical software package Minitab will be used to reinforce these techniques. The focus of this course is on business applications. This is a general introductory statistics course and is intended for a broad range of programs. (Prerequisites: STAT-145 or equivalent course.) Lecture 6 (Fall, Spring, Summer).
4
 
General Education – Social Perspective
3
 
Environmental Science Concentration Courses§
6
 
General Education – Immersion 1
3
 
Open Elective
3
Fourth Year
ENVS-551
Environmental Science Capstone Seminar I
This course brings together all of the principles of Environmental Science the student has learned during his/her four year undergraduate education at RIT. To accomplish this, students will work in teams to provide solutions to a real environmental problem or issue. In addition to working with RIT faculty, the students will work with practicing environmental scientists and the public. This first course will focus on problem definition, developing a problem solving strategy, and begin data collection and background analyses. Students will present their preliminary findings to the client through presentations and status reports. (This course is restricted to 4th year students in the ENVS-BS, ENVS-2M and ENVS-MN programs.) Lec/Lab 3 (Fall).
3
ENVS-552
Environmental Science Capstone Seminar II (WI-PR)
This course continues to bring together all of the principles of Environmental Science the student has learned during his/her four year undergraduate education at RIT as the follow-up to the first capstone course. Students will work in teams to provide solutions to a real environmental problem or issue. In addition to working with RIT faculty, the students will work with practicing environmental scientists and the public. This second course will focus on refining the methodology and strategy proposed to address the environmental issue, continue data collection and background analyses, interpret results, and propose solutions to the assigned problem. Students will generate a final report and present their findings to the clients. (Prerequisites: ENVS-551 or equivalent course.) Lec/Lab 3 (Spring).
3
ENVS-601
Environmental Science Graduate Studies I
This course helps graduate students learn how to assess journal articles, government reports, whitepapers, and essays as well as other relevant sources of information. Students will also refine their discussion and presentation skills and gain experience in effective communication to a diverse audience. This course will introduce students to careers in environmental science, to graduate studies in environmental science at RIT, and to the process of defining, conducting, presenting, and defending a thesis proposal. (This course is restricted to students in the ENVS-MS, ENVS-BS/MS program.) Lecture 2 (Fall).
2
ENVS-602
Environmental Science Graduate Studies II
A continuation of Grad Studies I, which helps graduate students learn how to assess journal articles, government reports, whitepapers, and essays as well as other relevant sources of information. Students will continue to refine their discussion and presentation skills and gain experience in clarifying their comments and responding to questions from an audience. Student will complete the process of defining, creating, presenting, and defending a thesis proposal. (This class is restricted to degree-seeking graduate students or those with permission from instructor.) Lecture 1 (Spring).
1
ENVS-795
Environmental Science Graduate Research
This course is a graduate level, faculty-directed, student project or research involving laboratory or field work, computer modeling, or theoretical calculations that could be considered of an original nature. The level of study is appropriate for students in Environmental Science graduate program. Thesis (Fall, Spring, Summer).
3
IMGS-431
Environmental Applications of Remote Sensing
This course offers an introduction to remote sensing systems and a selection of environmental applications of remote sensing. The basic properties of electromagnetic radiation, its interaction with the atmosphere and earth surfaces (e.g., vegetation, minerals, water, etc.), and the interpretation of these interactions are dealt with in the first half of the course. This is followed by a description of airborne and spaceborne, active and passive sensors that operate throughout the electromagnetic spectrum for detecting physical phenomena. Finally, an introduction is provided to pre-processing and analysis techniques that are useful for extracting information from such sensors. The Earth's atmospheric, hydrospheric, and terrestrial processes are considered at local to regional scales. Application areas include monitoring vegetation health, measuring biomass (carbon sequestration), identifying cultural features, assessing water resources, and detecting pollution and natural hazards. (Prerequisites: ENVS-250 or equivalent course.) Lab 3, Lecture 2 (Fall).
3
 
Environmental Science Concentration Courses§
6
 
Open Electives
6
 
General Education – Immersion 2, 3
6
Fifth Year
 
Graduate Professional Electives
6
 
Graduate Public Policy/STSO Elective
3
 
Graduate Statistics Elective
3
Choose one of the following:
6
    ENVS-790
   Environmental Science Thesis
The thesis option will be available to environmental science graduate students only with prior written approval of program faculty. Students will submit a proposal to a faculty member who agrees to serve as the student's thesis committee chair. The proposal will describe the basic research question to be investigated and the experimental protocols to be employed. Proposals will be reviewed by the program faculty who will give permission to register for thesis credit. This course may be taken several times over the course of a student's graduate program, for variable credits. A written thesis and oral defense are required at the completion of the thesis research. (Enrollment in this course requires permission from the department offering the course.) Thesis (Fall, Spring, Summer).
 
    ENVS-780
   Environmental Science Project
This course will result in an Environmental Science project accomplished by the MS student for an appropriate topic as arranged between the candidate and the project advisor. Credit 1-6 (This course requires permission of the Instructor to enroll.) Thesis (Fall, Spring, Summer).
 
Total Semester Credit Hours
145

Please see General Education Curriculum (GE) for more information.

(WI) Refers to a writing intensive course within the major.

Please see Wellness Education Requirement for more information. Students completing bachelor's degrees are required to complete two different Wellness courses.

§ Please see advisor for course choices.

Environmental Science, BS degree/Science, Technology and Public Policy, MS degree, typical course sequence

Course Sem. Cr. Hrs.
First Year
BIOL-121
Introductory Biology I
This course serves as an introduction to molecular biology, cellular biology, genetics, developmental biology, and evolutionary biology. Topics will include: a study of the basic principles of modern cellular biology, including cell structure and function; the chemical basis and functions of life, including enzyme systems and gene expression; and both the processes and patterns of the organismal development (ontogeny) and the evolution of life on Earth (phylogeny). Laboratory experiments are designed to illustrate concepts of basic cellular, molecular, developmental, and evolutionary biology, develop laboratory skills and techniques for microscopy and biotechnology, and improve ability to make, record and interpret observations. Lab 3, Lecture 3 (Fall, Spring).
4
BIOL-122
Introductory Biology II
This course serves as an introduction to the diversification of life, plant anatomy and physiology, animal anatomy and physiology, and ecology. Topics include a survey of the taxonomic diversity of the major groups of living organisms, the anatomical and physiological adaptations of both plants and animals, and the principles of the ecological relationships among organisms and environments. Laboratory exercises are designed to illustrate concepts of taxonomy, anatomical & physiological adaptation, and ecological relationships. Labs are also designed to help the development of laboratory skills and techniques for experiments with live organisms, and improve the ability to make, record and interpret observations. Lab 3, Lecture 3 (Fall, Spring).
4
ENVS-101
Concepts of Environmental Science
This course is the foundation course for the Environmental Science major and presents an integrated approach to the interrelated, interdisciplinary principles of environmental science through lecture, case studies and active participation. In this course, the focus will be on sustainability as the foundation for problem solving while investigating a number of environmental issues and establishing environmental literacy. Topics may include biodiversity, ecosystems, pollution, energy, and global climate change. To demonstrate the interdisciplinary methodology of environmental science, elements of government/political science/policy, ethics, economics, sociology, history and engineering are embedded in the scientific matrix used to present this course. Lecture 3 (Fall, Spring).
3
ENVS-102
Concepts of Environmental Science Lab
This course is the laboratory component of the foundation course for the Environmental Science major. Through in-class exercises, outside labs, and field trips, students will begin to learn problem solving and analytical skills needed to investigate and address complex environmental issues. Topics may include assessing campus biodiversity and ecosystems, calculating personal and campus ecological footprints and sustainability indices, environmental modeling, and campus sustainability efforts. To demonstrate the interdisciplinary methodology of environmental science, elements of government/political science/policy, ethics, economics, sociology, and history are embedded in the scientific matrix used to present this course. (Co-requisites: ENVS-101 or equivalent course.) Lab 3 (Fall).
1
ENVS-111
Soil Science
This is an introductory course on soil science, covering concepts such as soil taxonomy, soil ecology, physical soil properties, soil formation and geomorphology, and soil conservation. The lecture portion of the course will consist of in-class demonstrations and exercises, discussion groups, and traditional lecture materials. Lab exercises will focus on field sampling techniques and bench analyses, soil texture and partial size analyses, basic soil chemistry properties, land use planning, and spatial analyses. Lab 3, Lecture 3 (Fall).
4
MATH-161
General Education – Mathematical Perspective A: Applied Calculus
This course is an introduction to the study of differential and integral calculus, including the study of functions and graphs, limits, continuity, the derivative, derivative formulas, applications of derivatives, the definite integral, the fundamental theorem of calculus, basic techniques of integral approximation, exponential and logarithmic functions, basic techniques of integration, an introduction to differential equations, and geometric series. Applications in business, management sciences, and life sciences will be included with an emphasis on manipulative skills. (Prerequisite: C- or better in MATH-101, MATH-111, MATH-131, NMTH-260, NMTH-272 or NMTH-275 or Math Placement Exam score greater than or equal to 45.) Lecture 4 (Fall, Spring).
4
YOPS-010
RIT 365: RIT Connections
RIT 365 students participate in experiential learning opportunities designed to launch them into their career at RIT, support them in making multiple and varied connections across the university, and immerse them in processes of competency development. Students will plan for and reflect on their first-year experiences, receive feedback, and develop a personal plan for future action in order to develop foundational self-awareness and recognize broad-based professional competencies. Lecture 1 (Fall, Spring).
0
 
General Education – First Year Writing (WI)
3
 
General Education – Artistic Perspective
3
 
General Education – Global Perspective
3
Second Year
BIOL-240 
General Ecology (WI)
This course is an introduction to population, community and ecosystem ecology, stressing the dynamic interrelationships of plant and animal communities with their environments. The course includes such ecological concepts as energy flow and trophic levels in natural communities, population and community dynamics, biogeography and ecosystem ecology. (Prerequisites: BIOL-102 or BIOL-122 or (1001-201, 1001-202 and 1001-203) or (1001-251, 1001-252 and 1001-253) or equivalent course.) Lab 3, Lecture 3 (Fall).
4
CHMG-141
General Education – Natural Science Inquiry Perspective: General & Analytical Chemistry I
This is a general chemistry course for students in the life and physical sciences. College chemistry is presented as a science based on empirical evidence that is placed into the context of conceptual, visual, and mathematical models. Students will learn the concepts, symbolism, and fundamental tools of chemistry necessary to carry on a discourse in the language of chemistry. Emphasis will be placed on the relationship between atomic structure, chemical bonds, and the transformation of these bonds through chemical reactions. The fundamentals of organic chemistry are introduced throughout the course to emphasize the connection between chemistry and the other sciences. Lecture 3, Recitation 1 (Fall, Spring, Summer).
3
CHMG-142
General Education – Scientific Principles Perspective: General & Analytical Chemistry II
The course covers the thermodynamics and kinetics of chemical reactions. The relationship between energy and entropy change as the driving force of chemical processes is emphasized through the study of aqueous solutions. Specifically, the course takes a quantitative look at: 1) solubility equilibrium, 2) acid-base equilibrium, 3) oxidation-reduction reactions and 4) chemical kinetics. (Prerequisites: CHMG-141 or CHMG-131 or equivalent course.) Lecture 3 (Fall, Spring, Summer).
3
CHMG-145
General Education – Natural Science Inquiry Perspective: General & Analytical Chemistry I Lab
The course combines hands-on laboratory exercises with workshop-style problem sessions to complement the CHMG-141 lecture material. The course emphasizes laboratory techniques and data analysis skills. Topics include: gravimetric, volumetric, thermal, titration and spectrophotometric analyses, and the use of these techniques to analyze chemical reactions. (Corequisite: CHMG-141 or CHMG-131 or equivalent course.) Lab 3 (Fall, Spring, Summer).
1
CHMG-146
General Education – Scientific Principles Perspective: General & Analytical Chemistry II Lab
The course combines hands-on laboratory exercises with workshop-style problem sessions to complement the CHMG-142 lecture material. The course emphasizes the use of experiments as a tool for chemical analysis and the reporting of results in formal lab reports. Topics include the quantitative analysis of a multicomponent mixture using complexation and double endpoint titration, pH measurement, buffers and pH indicators, the kinetic study of a redox reaction, and the electrochemical analysis of oxidation reduction reactions. (Prerequisites: CHMG-131 or CHMG-141 or equivalent course. Corequisites: CHMG-142 or equivalent course.) Lab 3 (Fall, Spring, Summer).
1
ENVS-250
Applications of Geographic Information Systems
Through hands-on projects and case studies, this course illustrates concepts and applications of raster and vector geographic information systems (GIS) in a variety of disciplines, such as environmental science, biology, geology, geography, sociology, and economics. Students will learn how to use GIS software and spatial analyses, plan a project, create a database, and conduct an independent project. Students should have completed a foundational course in their major and be comfortable working with computers. Experience with programming is also useful. (Foundational course in student's major field of study or permission of instructor). Lec/Lab 6 (Fall).
4
ENVS-301
Environmental Science Field Skills
Environmental Science Field Skills presents an integrated approach to the interrelated, interdisciplinary principles of environmental science through case studies, site visits and field work. In this course, the focus will be on learning methods for environmental analysis, including experimental design, water and soil quality, primary production and biodiversity, land use/land cover change and ecosystem restoration. The course will culminate in a stressed stream analysis of a local watershed. Additional topics may include geographic information systems, wetlands, environmental education and sustainable food production. The interdisciplinary nature of environmental science will be illustrated through elements of government/political science/policy, ethics, economics, sociology, history and engineering. (Prerequisites: ENVS-201 and CHMG-141 and BIOL-122 or equivalent courses.) Lab 3, Lecture 3 (Spring).
4
STSO-220
Environment and Society
This course introduces the interdisciplinary foundations of environmental science via an analysis of sustainability within a socio-cultural context. This is a required course for the environmental science degree program. Lecture (Fall).
3
Choose one of the following:
3
   STSO-421
   Environmental Policy
This course introduces students to federal, state, and local environmental policies and the various policy paths leading to their establishment. Students will understand how societal values inform the content of environmental policies and the impacts, in turn, of these policies on society. In addition, the class will explore how environmental economics informs the new tools of environmental policy. The course covers a range of environmental policies at the U.S. and international levels addressing problems such as air and water pollution, climate change, energy use, and community sustainability. Lecture (Spring).
 
   PUBL-210
   Introduction to Qualitative Policy Analysis
This course teaches the practical aspects of doing theoretically informed qualitative social research with policy applications. Special attention is given to the processes by which research problems are formulated, research designs selected, data gathered and interpreted, and inferences and conclusions drawn. A variety of tools, such as surveys, interviewing, and content analysis will be applied to specific case studies covering multiple policy issues. Lecture (Spring).
 
   STSO-422
   Great Lakes
This course utilizes the Great Lakes Basin as an integrating context for understanding global environmental issues. Examining the basin through an interdisciplinary environmental lens the class applies social science approaches to environmental problem solving. Students assess the local, regional, national and international scope of Great Lakes environmental issues through lecture, role-play, and field experiences and consider the importance of government action, public policy, ethics, economics, sociology, history, and engineering while applying social science analysis skills such as surveys, interviews, and content analysis to better understand the depth of local environmental problems and their potential solutions. Environmental science majors prepare a proposal for an environmental consulting project. Lecture (Fall).
 
 
General Education – Ethical Perspective
3
 
Open Elective
3
Third Year
BIOL-575
Conservation Biology
This course focuses on the application of ecological principles to conservation issues. Human impact on species diversity is emphasized as it relates to agricultural, forest, coastal and wetland ecosystems. Case studies of management practices used to manage and restore disturbed ecosystems are included. (Prerequisites: BIOL-240 or equivalent course.) Lecture 3 (Spring).
3
CHMO-231
Organic Chemistry I
This course is a study of the structure, nomenclature, reactions and synthesis of the following functional groups: alkanes, alkenes, alkynes. This course also introduces chemical bonding, IR and NMR spectroscopy, acid and base reactions, stereochemistry, nucleophilic substitution reactions, and alkene and alkyne reactions. In addition, the course provides an introduction to the use of mechanisms in describing and predicting organic reactions. (Prerequisites: CHMG-142 or CHMG-131 or equivalent course. Corequisites: CHMO-235 or equivalent course.) Lecture 3 (Fall, Spring, Summer).
3
CHMO-235
Organic Chemistry Lab I
This course trains students to perform techniques important in an organic chemistry lab. The course also covers reactions from the accompanying lecture CHMO-231. (Corequisite: CHMO-231 or equivalent course.) Lab 3 (Fall, Spring, Summer).
1
ENVS-550
Hydrologic Applications of Geographic Information Systems
Aerial photography, satellite imagery, Global Positioning Systems (GPS), and Geographic Information Systems (GIS) are extremely useful tools in hydrologic modeling and environmental applications such as rainfall runoff modeling, pollution loading, landscape change analyses, and terrain modeling. This course will: 1) introduce students to spatial analysis theories, techniques and issues associated with hydrologic and environmental applications; 2) provide hands-on training in the use of these spatial tools and models while addressing a real problem; 3) provide experience linking GIS and model results to field assessments and monitoring activities; and 4) enable students to solve a variety of spatial and temporal hydrologic and environmental problems. (Prerequisites: ENVS-250 or equivalent course.) Studio 6 (Spring).
4
PUBL-702
Graduate Decision Analysis
This course provides students with an introduction to decision science and analysis. The course focuses on several important tools for making good decisions, including decision trees, including forecasting, risk analysis, and multi-attribute decision making. Students will apply these tools to contemporary public policy decision making at the local, state, federal, and international levels. Lecture (Spring).
3
STAT-145
General Education – Mathematical Perspective B: Introduction to Statistics I
This course introduces statistical methods of extracting meaning from data, and basic inferential statistics. Topics covered include data and data integrity, exploratory data analysis, data visualization, numeric summary measures, the normal distribution, sampling distributions, confidence intervals, and hypothesis testing. The emphasis of the course is on statistical thinking rather than computation. Statistical software is used. (Prerequisite: MATH-101 or MATH-111 or NMTH-260 or NMTH-272 or NMTH-275 or a math placement exam score of at least 35.) Lecture 3 (Fall, Spring, Summer).
3
STAT-146
Introduction to Statistics II
This course is an elementary introduction to the topics of regression and analysis of variance. The statistical software package Minitab will be used to reinforce these techniques. The focus of this course is on business applications. This is a general introductory statistics course and is intended for a broad range of programs. (Prerequisites: STAT-145 or equivalent course.) Lecture 6 (Fall, Spring, Summer).
4
 
Environmental Science Concentration Course
4
 
General Education – Social Perspective
3
 
General Education - Immersion 1
3
 
Open Elective
3
Fourth Year
ENVS-551
Environmental Science Capstone Seminar I
This course brings together all of the principles of Environmental Science the student has learned during his/her four year undergraduate education at RIT. To accomplish this, students will work in teams to provide solutions to a real environmental problem or issue. In addition to working with RIT faculty, the students will work with practicing environmental scientists and the public. This first course will focus on problem definition, developing a problem solving strategy, and begin data collection and background analyses. Students will present their preliminary findings to the client through presentations and status reports. (This course is restricted to 4th year students in the ENVS-BS, ENVS-2M and ENVS-MN programs.) Lec/Lab 3 (Fall).
3
ENVS-552
Environmental Science Capstone Seminar II (WI)
This course continues to bring together all of the principles of Environmental Science the student has learned during his/her four year undergraduate education at RIT as the follow-up to the first capstone course. Students will work in teams to provide solutions to a real environmental problem or issue. In addition to working with RIT faculty, the students will work with practicing environmental scientists and the public. This second course will focus on refining the methodology and strategy proposed to address the environmental issue, continue data collection and background analyses, interpret results, and propose solutions to the assigned problem. Students will generate a final report and present their findings to the clients. (Prerequisites: ENVS-551 or equivalent course.) Lec/Lab 3 (Spring).
3
IMGS-431
Environmental Applications of Remote Sensing
This course offers an introduction to remote sensing systems and a selection of environmental applications of remote sensing. The basic properties of electromagnetic radiation, its interaction with the atmosphere and earth surfaces (e.g., vegetation, minerals, water, etc.), and the interpretation of these interactions are dealt with in the first half of the course. This is followed by a description of airborne and spaceborne, active and passive sensors that operate throughout the electromagnetic spectrum for detecting physical phenomena. Finally, an introduction is provided to pre-processing and analysis techniques that are useful for extracting information from such sensors. The Earth's atmospheric, hydrospheric, and terrestrial processes are considered at local to regional scales. Application areas include monitoring vegetation health, measuring biomass (carbon sequestration), identifying cultural features, assessing water resources, and detecting pollution and natural hazards. (Prerequisites: ENVS-250 or equivalent course.) Lab 3, Lecture 2 (Fall).
3
PUBL-701
Graduate Policy Analysis
This course provides graduate students with necessary tools to help them become effective policy analysts. The course places particular emphasis on understanding the policy process, the different approaches to policy analysis, and the application of quantitative and qualitative methods for evaluating public policies. Students will apply these tools to contemporary public policy decision making at the local, state, federal, and international levels. Lecture (Fall).
3
STSO-710
Graduate Science and Technology Policy Seminar
Examines how federal and international policies are developed to influence research and development, innovation, and the transfer of technology in the United States and other selected nations. Students in the course will apply basic policy skills, concepts, and methods to contemporary science and technology policy topics. (This class is restricted to degree-seeking graduate students or those with permission from instructor.) Seminar (Fall).
3
 
Environmental Science Concentration Course
4
 
General Education – Immersion 2, 3
6
 
Public Policy Elective
3
Fifth Year
PUBL-700
Readings in Public Policy
An in-depth inquiry into key contemporary public policy issues. Students will be exposed to a wide range of important public policy texts, and will learn how to write a literature review in a policy area of their choosing. (This class is restricted to degree-seeking graduate students or those with permission from instructor.) Seminar (Fall).
3
PUBL-703
Evaluation and Research Design
The focus of this course is on evaluation of program outcomes and research design. Students will explore the questions and methodologies associated with meeting programmatic outcomes, secondary or unanticipated effects, and an analysis of alternative means for achieving program outcomes. Critique of evaluation research methodologies will also be considered. Seminar (Spring).
3
 
Public Policy Electives
6
 
Open Elective
3
Choose one of the following:
6
   PUBL-790
   Public Policy Thesis
The master's thesis in science, technology, and public policy requires the student to select a thesis topic, advisor and committee; prepare a written thesis proposal for approval by the faculty; present and defend the thesis before a thesis committee; and submit a bound copy of the thesis to the library and to the program chair. (Enrollment in this course requires permission from the department offering the course.) Thesis 3 (Fall, Spring, Summer).
 
    
   Graduate Electives, PUBL-798 Comprehensive Exam
 
Total Semester Credit Hours
144

Please see General Education Curriculum (GE) for more information.

(WI) Refers to a writing intensive course within the major.

* Please see Wellness Education Requirement for more information. Students completing bachelor's degrees are required to complete two different Wellness courses.

Admission Requirements

Freshman Admission

For all bachelor’s degree programs, a strong performance in a college preparatory program is expected. Generally, this includes 4 years of English, 3-4 years of mathematics, 2-3 years of science, and 3 years of social studies and/or history.

Specific math and science requirements and other recommendations

  • 3 years of math required; pre-calculus recommended
  • Biology and chemistry required

Transfer Admission

Transfer course recommendations without associate degree

Courses in liberal arts, sciences, and math

Appropriate associate degree programs for transfer

AS degree in biology, chemistry, environmental science, liberal arts with science option

Learn about admissions, cost, and financial aid 

Latest News

  • April 24, 2020

    cattle in pasture

    Essential pandemic partners

    Learn how environmental scientists combine their love of nature with cutting-edge research to help understand the origins of infection.

  • December 3, 2019

    exterior shot of home on large property surrounded by trees and water.

    RIT gifted 177-acre estate to expand research, educational offerings

    RIT will use a substantial gift of real estate in Penfield to expand the university’s research and educational offerings in ecology, agriculture, sustainability and other fields. Amy Leenhouts Tait and Robert C. Tait have gifted to the university their 177-acre property, which will be dedicated as the Tait Preserve of RIT.